Blood viscosity in tube flow: dependence on diameter and hematocrit
- PMID: 1481902
- DOI: 10.1152/ajpheart.1992.263.6.H1770
Blood viscosity in tube flow: dependence on diameter and hematocrit
Abstract
Since the original publications by Martini et al. (Dtsch. Arch. Klin. Med. 169: 212-222, 1930) and Fahraeus and Lindqvist (Am. J. Physiol. 96: 562-568, 1931), it has been known that the relative apparent viscosity of blood in tube flow depends on tube diameter. Quantitative descriptions of this effect and of the dependence of blood viscosity on hematocrit in the different diameter tubes are required for the development of hydrodynamic models of blood flow through the microcirculation. The present study provides a comprehensive data base for the description of relative apparent blood viscosity as a function of tube diameter and hematocrit. Data available from the literature are compiled, and new experimental data obtained in a capillary viscometer are presented. The combined data base comprises measurements at high shear rates (u > or = 50 s-1) in tubes with diameters ranging from 3.3 to 1,978 microns at hematocrits of up to 0.9. If corrected for differences in suspending medium viscosity and temperature, the data show remarkable agreement. Empirical fitting equations predicting relative apparent blood viscosity from tube diameter and hematocrit are presented. A pronounced change in the hematocrit dependence of relative viscosity is observed in a range of tube diameters in which viscosity is minimal. While a linear hematocrit-viscosity relationship is found in tubes of < or = 6 microns, an overproportional increase of viscosity with hematocrit prevails in tubes of > or = 9 microns. This is interpreted to reflect the hematocrit-dependent transition from single- to multifile arrangement of cells in flow.
Similar articles
-
Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.Circ Res. 1986 Aug;59(2):124-32. doi: 10.1161/01.res.59.2.124. Circ Res. 1986. PMID: 3742742
-
Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.Am J Physiol. 1988 Feb;254(2 Pt 2):H238-49. doi: 10.1152/ajpheart.1988.254.2.H238. Am J Physiol. 1988. PMID: 3344815
-
Viscosity reduction of red blood cells from preterm and full-term neonates and adults in narrow tubes (Fahraeus-Lindqvist effect).Pediatr Res. 1989 Jun;25(6):595-9. doi: 10.1203/00006450-198906000-00009. Pediatr Res. 1989. PMID: 2740150
-
Determinants of tumor blood flow: a review.Cancer Res. 1988 May 15;48(10):2641-58. Cancer Res. 1988. PMID: 3282647 Review.
-
Rheology of the microcirculation.Clin Hemorheol Microcirc. 2003;29(3-4):143-8. Clin Hemorheol Microcirc. 2003. PMID: 14724335 Review.
Cited by
-
Development of a Customizable Hepatic Arterial Tree and Particle Transport Model for Use in Treatment Planning.IEEE Trans Radiat Plasma Med Sci. 2019 Jan;3(1):31-37. doi: 10.1109/trpms.2018.2842463. Epub 2018 May 31. IEEE Trans Radiat Plasma Med Sci. 2019. PMID: 33829118 Free PMC article.
-
Contractile pericytes determine the direction of blood flow at capillary junctions.Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):27022-27033. doi: 10.1073/pnas.1922755117. Epub 2020 Oct 13. Proc Natl Acad Sci U S A. 2020. PMID: 33051294 Free PMC article.
-
Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond.J R Soc Interface. 2016 May;13(118):20151107. doi: 10.1098/rsif.2015.1107. J R Soc Interface. 2016. PMID: 27194481 Free PMC article.
-
The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature.Am J Physiol Heart Circ Physiol. 2016 Jul 1;311(1):H168-76. doi: 10.1152/ajpheart.00132.2016. Epub 2016 May 6. Am J Physiol Heart Circ Physiol. 2016. PMID: 27199117 Free PMC article.
-
Blood flow and cell-free layer in microvessels.Microcirculation. 2010 Nov;17(8):615-28. doi: 10.1111/j.1549-8719.2010.00056.x. Microcirculation. 2010. PMID: 21044216 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources