Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Feb 15;1608(2-3):75-96.
doi: 10.1016/j.bbabio.2003.12.004.

The low molecular mass subunits of the photosynthetic supracomplex, photosystem II

Affiliations
Free article
Review

The low molecular mass subunits of the photosynthetic supracomplex, photosystem II

Lan-Xin Shi et al. Biochim Biophys Acta. .
Free article

Abstract

The photosystem II (PSII) complex is located in the thylakoid membrane of higher plants, algae and cyanobacteria and drives the water oxidation process of photosynthesis, which splits water into reducing equivalents and molecular oxygen by solar energy. Electron and X-ray crystallography analyses have revealed that the PSII core complex contains between 34 and 36 transmembrane alpha-helices, depending on the organism. Of these helices at least 12-14 are attributed to low molecular mass proteins. However, to date, at least 18 low molecular mass (<10 kDa) subunits are putatively associated with the PSII complex. Most of them contain a single transmembrane span and their protein sequences are conserved among photosynthetic organisms. In addition, these proteins do not have any similarity to any known functional proteins in any type of organism, and only two of them bind a cofactor. These findings raise intriguing questions about why there are so many small protein subunits with single-transmembrane spans in the PSII complex, and their possible functions. This article reviews our current knowledge of this group of proteins. Deletion mutations of the low molecular mass subunits from both prokaryotic and eukaryotic model systems are compared in an attempt to understand the function of these proteins. From these comparisons it seems that the majority of them are involved in stabilization, assembly or dimerization of the PSII complex. The small proteins may facilitate fast dynamic conformational changes that the PSII complex needs to perform an optimal photosynthetic activity.

PubMed Disclaimer

LinkOut - more resources