Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 1;10(3):1090-9.
doi: 10.1158/1078-0432.ccr-03-0145.

Intratumoral vaccination and diversified subcutaneous/ intratumoral vaccination with recombinant poxviruses encoding a tumor antigen and multiple costimulatory molecules

Affiliations

Intratumoral vaccination and diversified subcutaneous/ intratumoral vaccination with recombinant poxviruses encoding a tumor antigen and multiple costimulatory molecules

Chie Kudo-Saito et al. Clin Cancer Res. .

Abstract

Purpose: Intratumoral (i.t.) vaccination represents a potential modality for the therapy of tumors. Previous i.t. vaccination studies have focused on the efficacy of i.t. vaccination alone. There are no reports that clearly compared i.t. vaccination with systemic vaccination achieved by s.c., intradermal, or i.m. injection, or combining both modalities of systemic and i.t. vaccination. Here, we compared the antitumor effects induced by a systemic vaccination regimen (s.c.) and i.t. vaccination, and a sequential s.c/i.t. vaccination regimen. In this study, we used a recombinant vaccinia virus containing the transgenes for carcinoembryonic antigen (CEA) and a triad of T-cell costimulatory molecules (B7-1, ICAM-1, and LFA-3; designated rV-CEA/TRICOM) for s.c. priming and a replication defective avipox (fowlpox) virus containing the same four transgenes (designated rF-CEA/TRICOM) for i.t. vaccination or s.c. booster vaccinations.

Experimental design: Vaccination was started on day 8 after s.c. implantation with CEA-positive tumors. We compared the antitumor activity induced by these vaccines when administered via the i.t. route versus the s.c. route. Subsequent therapy studies examined the sequential combination of these routes, s.c. priming with rV-CEA/TRICOM followed by i.t. boosting with rF-CEA/TRICOM. Initial studies were conducted in conventional mice to define optimal vaccine regimens and then in CEA-transgenic mice that expressed CEA as a "self" antigen in a manner similar to that of an advanced colorectal cancer patient.

Results: The results demonstrate that the antitumor activity induced by i.t. vaccination is superior to that induced by s.c. vaccination. For more advanced tumors, a s.c. priming vaccination, followed by i.t. boosting vaccinations was superior to either s.c. or i.t. vaccination alone. Both of these phenomena were observed in tumor models where the tumor-associated antigen is a foreign antigen and in a CEA-transgenic tumor model where the tumor-associated antigen is a self-antigen. The cytokine, granulocyte macrophage colony-stimulating factor admixed in vaccines, was shown to be essential in inducing the antitumor activity.

Conclusions: These studies demonstrate that the diversified vaccine regimens that consisted of s.c. prime and i.t. boosts with CEA/TRICOM vectors could induce antitumor therapy superior to that seen by either route alone.

PubMed Disclaimer

Publication types

LinkOut - more resources