Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Jan;81(1):197-205.
doi: 10.1093/oxfordjournals.jbchem.a131436.

Studies on the microsomal electron-transport system of anaerobically grown yeast. V. Purification and characterization of NADPH-cytochrome c reductase

Free article

Studies on the microsomal electron-transport system of anaerobically grown yeast. V. Purification and characterization of NADPH-cytochrome c reductase

S Kubota et al. J Biochem. 1977 Jan.
Free article

Abstract

A flavoprotein catalyzing the reduction of cytochrome c by NADPH was solubilized and purified from microsomes of yeast grown anaerobically. The cytochrome c reductase had an apparent molecular weight of 70,000 daltons and contained one mole each of FAD and FMN per mole of enzyme. The reductase could reduce some redox dyes as well as cytochrome c, but could not catalyze the reduction of cytochrome b5. The reductase preparation also catalyzed the oxidation of NADPH with molecular oxygen in the presence of a catalytic amount of 2-methyl-1,4-naphthoquinone (menadione). The Michaelis constants of the reductase for NADPH and cytochrome c were determined to be 32.4 and 3.4 micron M, respectively, and the optimal pH for cytochrome c reduction was 7.8 to 8.0. It was concluded that yeast NADPH-cytochrome c reductase is in many respects similar to the liver microsomal reductase which acts as an NADPH-cytochrome P-450 reductase [EC 1.6.2.4].

PubMed Disclaimer

Similar articles

Cited by

MeSH terms