Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle
- PMID: 14961024
- DOI: 10.1038/nature02328
Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle
Abstract
The movement of sister chromatids to opposite spindle poles during anaphase depends on the prior capture of sister kinetochores by microtubules with opposing orientations (amphitelic attachment or bi-orientation). In addition to proteins necessary for the kinetochore-microtubule attachment, bi-orientation requires the Ipl1 (Aurora B in animal cells) protein kinase and tethering of sister chromatids by cohesin. Syntelic attachments, in which sister kinetochores attach to microtubules with the same orientation, must be either 'avoided' or 'corrected'. Avoidance might be facilitated by the juxtaposition of sister kinetochores such that they face in opposite directions; kinetochore geometry is therefore deemed important. Error correction, by contrast, is thought to stem from the stabilization of kinetochore-spindle pole connections by tension in microtubules, kinetochores, or the surrounding chromatin arising from amphitelic but not syntelic attachment. The tension model predicts that any type of connection between two kinetochores suffices for efficient bi-orientation. Here we show that the two kinetochores of engineered, unreplicated dicentric chromosomes in Saccharomyces cerevisiae bi-orient efficiently, implying that sister kinetochore geometry is dispensable for bi-orientation. We also show that Ipl1 facilitates bi-orientation by promoting the turnover of kinetochore-spindle pole connections in a tension-dependent manner.
Comment in
-
Cell division: feeling tense enough?Nature. 2004 Mar 4;428(6978):32-3. doi: 10.1038/428032b. Nature. 2004. PMID: 14999271 No abstract available.
Similar articles
-
Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism.Curr Biol. 2007 Dec 18;17(24):2175-82. doi: 10.1016/j.cub.2007.11.032. Epub 2007 Nov 29. Curr Biol. 2007. PMID: 18060784 Free PMC article.
-
Chromosome bi-orientation on the mitotic spindle.Philos Trans R Soc Lond B Biol Sci. 2005 Mar 29;360(1455):581-9. doi: 10.1098/rstb.2004.1612. Philos Trans R Soc Lond B Biol Sci. 2005. PMID: 15897181 Free PMC article. Review.
-
The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores.Nat Cell Biol. 2006 Jan;8(1):78-83. doi: 10.1038/ncb1341. Epub 2005 Dec 4. Nat Cell Biol. 2006. PMID: 16327780
-
Essential roles for cohesin in kinetochore and spindle function in Xenopus egg extracts.J Cell Sci. 2006 Dec 15;119(Pt 24):5057-66. doi: 10.1242/jcs.03277. J Cell Sci. 2006. PMID: 17158911
-
The 'anaphase problem': how to disable the mitotic checkpoint when sisters split.Biochem Soc Trans. 2010 Dec;38(6):1660-6. doi: 10.1042/BST0381660. Biochem Soc Trans. 2010. PMID: 21118144 Review.
Cited by
-
Pericentromeric sister chromatid cohesion promotes kinetochore biorientation.Mol Biol Cell. 2009 Sep;20(17):3818-27. doi: 10.1091/mbc.e09-04-0330. Epub 2009 Jul 15. Mol Biol Cell. 2009. PMID: 19605555 Free PMC article.
-
A Bir1-Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension.Cell. 2006 Dec 15;127(6):1179-91. doi: 10.1016/j.cell.2006.09.049. Cell. 2006. PMID: 17174893 Free PMC article.
-
Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism.Curr Biol. 2007 Dec 18;17(24):2175-82. doi: 10.1016/j.cub.2007.11.032. Epub 2007 Nov 29. Curr Biol. 2007. PMID: 18060784 Free PMC article.
-
Centromeres: unique chromatin structures that drive chromosome segregation.Nat Rev Mol Cell Biol. 2011 May;12(5):320-32. doi: 10.1038/nrm3107. Nat Rev Mol Cell Biol. 2011. PMID: 21508988 Free PMC article. Review.
-
Sororin actively maintains sister chromatid cohesion.EMBO J. 2016 Mar 15;35(6):635-53. doi: 10.15252/embj.201592532. Epub 2016 Feb 22. EMBO J. 2016. PMID: 26903600 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases