Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 12;427(6975):615-8.
doi: 10.1038/nature02310.

A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor

Affiliations

A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor

Ansheng Liu et al. Nature. .

Abstract

Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III-V semiconductor compounds and/or electro-optic materials such as lithium niobate. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only approximately 20 MHz (refs 10, 11), although it has been predicted theoretically that a approximately 1-GHz modulation frequency might be achievable in some device structures. Here we describe an approach based on a metal-oxide-semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

PubMed Disclaimer

Comment in