Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Feb;15(2 Pt 1):121-6.
doi: 10.1097/01.rvi.0000109394.74740.56.

The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy

Affiliations
Review

The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy

David A Nussbaum et al. J Vasc Interv Radiol. 2004 Feb.

Abstract

Advances in image-guided therapy for vertebral fractures and other bone-related disorders have made acrylic bone cement an integral part of the interventional armamentarium. Unfortunately, information on the properties and chemistry of these compounds is mostly published in the biomaterial sciences literature, a source with which the interventional community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the properties of components in polymethylmethacrylate (PMMA)-based polymers, the most commonly used bone cements in interventional procedures such as percutaneous vertebroplasty. The effects of altering the concentration of components such as methylmethacrylate monomers, PMMA beads, benzoyl peroxide activator, N,N-dimethyl-p-toluidine (DMPT) initiator, and radiopacifiers on the setting time, polymerization temperature, and compressive strength of the cement are also considered. This information will allow interventional radiologists to manipulate bone cement characteristics for specific applications and maximize the clinical potential of image-guided interventions.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources