Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May;219(1):14-22.
doi: 10.1007/s00425-003-1200-7. Epub 2004 Feb 13.

Formation of unidentified nitrogen in plants: an implication for a novel nitrogen metabolism

Affiliations

Formation of unidentified nitrogen in plants: an implication for a novel nitrogen metabolism

Hiromichi Morikawa et al. Planta. 2004 May.

Abstract

Plants take up inorganic nitrogen and store it unchanged or convert it to organic forms. The nitrogen in such organic compounds is stoichiometrically recoverable by the Kjeldahl method. The sum of inorganic nitrogen and Kjeldahl nitrogen has long been known to equal the total nitrogen in plants. However, in our attempt to study the mechanism of nitrogen dioxide (NO(2)) metabolism, we unexpectedly discovered that about one-third of the total nitrogen derived from (15)N-labeled NO(2) taken up by Arabidopsis thaliana (L.) Heynh. plants was converted to neither inorganic nor Kjeldahl nitrogen, but instead to an as yet unknown nitrogen compound(s). We here refer to this nitrogen as unidentified nitrogen ( UN). The generality of the formation of UN across species, nitrogen sources and cultivation environments for plants has been shown as follows. Firstly, all of the other 11 plant species studied were found to form the UN in response to fumigation with (15)NO(2). Secondly, tobacco ( Nicotiana tabacum L.) plants fed with (15)N-nitrate appeared to form the UN. And lastly, the leaves of naturally fed vegetables, grass and roadside trees were found to possess the UN. In addition, the UN appeared to comprise a substantial proportion of total nitrogen in these plant species. Collectively, all of our present findings imply that there is a novel nitrogen mechanism for the formation of UN in plants. Based on the analyses of the exhaust gas and residue fractions of the Kjeldahl digestion of a plant sample containing the UN, probable candidates for compounds that bear the UN were deduced to be those containing the heat-labile nitrogen-oxygen functions and those recalcitrant to Kjeldahl digestion, including organic nitro and nitroso compounds. We propose UN-bearing compounds may provide a chemical basis for the mechanism of the reactive nitrogen species (RNS), and thus that cross-talk may occur between UN and RNS metabolisms in plants. A mechanism for the formation of UN-bearing compounds, in which RNS are involved as intermediates, is proposed. The important broad impact of this novel nitrogen metabolism, not only on the general physiology of plants, but also on plant substances as human and animal food, and on plants as an integral part of the global environment, is discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cell. 2001 Sep 21;106(6):675-83 - PubMed
    1. Nitric Oxide. 1997 Apr;1(2):177-89 - PubMed
    1. Plant Physiol. 2002 Mar;128(3):790-2 - PubMed
    1. Br J Nutr. 1999 May;81(5):349-58 - PubMed
    1. Cell Mol Life Sci. 1999 Nov 15;56(7-8):549-57 - PubMed

Publication types

LinkOut - more resources