Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study
- PMID: 14967151
- DOI: 10.1016/s1097-2765(04)00027-9
Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study
Abstract
SspB homodimers deliver ssrA-tagged substrates to ClpXP for degradation. SspB consists of a substrate binding domain and an unstructured tail with a ClpX binding module (XB). Using computational design, we engineered an SspB heterodimer whose subunits did not form homodimers. Experiments with the designed molecule and variants lacking one or two tails demonstrate that both XB modules are required for strong binding and efficient substrate delivery to ClpXP. Assembly of stable SspB-substrate-ClpX delivery complexes requires the coupling of weak tethering interactions between ClpX and the SspB XB modules as well as interactions between ClpX and the substrate degradation tag. The ClpX hexamer contains three XB binding sites, one per N domain dimer, and thus binds strongly to just one SspB dimer at a time. Because different adaptor proteins use the same tethering sites in ClpX, those which employ bivalent tethering, like SspB, will compete more effectively for substrate delivery to ClpXP.
Similar articles
-
SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags.Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12136-41. doi: 10.1073/pnas.0404733101. Epub 2004 Aug 5. Proc Natl Acad Sci U S A. 2004. PMID: 15297609 Free PMC article.
-
Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery.J Biol Chem. 2007 Apr 13;282(15):11465-73. doi: 10.1074/jbc.M610671200. Epub 2007 Feb 22. J Biol Chem. 2007. PMID: 17317664
-
Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease.Mol Cell. 2003 Aug;12(2):355-63. doi: 10.1016/s1097-2765(03)00272-7. Mol Cell. 2003. PMID: 14536075
-
Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer.Chem Biol. 2002 Nov;9(11):1237-45. doi: 10.1016/s1074-5521(02)00268-5. Chem Biol. 2002. PMID: 12445774
-
[Bacterial ClpX protease structure and function--a review].Wei Sheng Wu Xue Bao. 2010 Oct;50(10):1281-7. Wei Sheng Wu Xue Bao. 2010. PMID: 21141460 Review. Chinese.
Cited by
-
Structure of the N-terminal fragment of Escherichia coli Lon protease.Acta Crystallogr D Biol Crystallogr. 2010 Aug;66(Pt 8):865-73. doi: 10.1107/S0907444910019554. Epub 2010 Jul 9. Acta Crystallogr D Biol Crystallogr. 2010. PMID: 20693685 Free PMC article.
-
SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags.Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12136-41. doi: 10.1073/pnas.0404733101. Epub 2004 Aug 5. Proc Natl Acad Sci U S A. 2004. PMID: 15297609 Free PMC article.
-
Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates.Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3853-9. doi: 10.1073/pnas.1414933111. Epub 2014 Sep 3. Proc Natl Acad Sci U S A. 2014. PMID: 25187555 Free PMC article.
-
Regulated Proteolysis in Bacteria: Caulobacter.Annu Rev Genet. 2016 Nov 23;50:423-445. doi: 10.1146/annurev-genet-120215-035235. Epub 2016 Oct 13. Annu Rev Genet. 2016. PMID: 27893963 Free PMC article. Review.
-
Engineering synthetic adaptors and substrates for controlled ClpXP degradation.J Biol Chem. 2009 Aug 14;284(33):21848-21855. doi: 10.1074/jbc.M109.017624. Epub 2009 Jun 23. J Biol Chem. 2009. PMID: 19549779 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous