Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr;14(4):347-60.
doi: 10.1093/treephys/14.4.347.

Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes

Affiliations
Free article

Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes

G W Koch et al. Tree Physiol. 1994 Apr.
Free article

Abstract

Diurnal patterns of leaf conductance, net photosynthesis and water potential of five tree species were measured at the top of the canopy in a tropical lowland rain forest in southwestern Cameroon. Access to the 40 m canopy was by a large canopy-supported raft, the Radeau des Cimes. The measurements were made under ambient conditions, but the raft altered the local energy balance at times, resulting in elevated leaf temperatures. Leaf water potential was equal to or greater than the gravitational potential at 40 m in the early morning, falling to values as low as -3.0 MPa near midday. Net photosynthesis and conductance were typically highest during midmorning, with values of about 10-12 micro mol CO(2) m(-2) s(-1) and 0.2-0.3 mol H(2)O m(-2) s(-1), respectively. Leaf conductance and net photosynthesis commonly declined through midday with occasional recovery late in the day. Photosynthesis was negatively related to leaf temperature above midday air temperature maxima. These patterns were similar to those observed in other seasonally droughted evergreen communities, such as Mediterranean-climate shrubs, and indicate that environmental factors may cause stomatal closure and limit photosynthesis in tropical rain forests during the midday period.

PubMed Disclaimer