Maximum likelihood methods for nonignorable missing responses and covariates in random effects models
- PMID: 14969495
- DOI: 10.1111/j.0006-341x.2003.00131.x
Maximum likelihood methods for nonignorable missing responses and covariates in random effects models
Abstract
This article analyzes quality of life (QOL) data from an Eastern Cooperative Oncology Group (ECOG) melanoma trial that compared treatment with ganglioside vaccination to treatment with high-dose interferon. The analysis of this data set is challenging due to several difficulties, namely, nonignorable missing longitudinal responses and baseline covariates. Hence, we propose a selection model for estimating parameters in the normal random effects model with nonignorable missing responses and covariates. Parameters are estimated via maximum likelihood using the Gibbs sampler and a Monte Carlo expectation maximization (EM) algorithm. Standard errors are calculated using the bootstrap. The method allows for nonmonotone patterns of missing data in both the response variable and the covariates. We model the missing data mechanism and the missing covariate distribution via a sequence of one-dimensional conditional distributions, allowing the missing covariates to be either categorical or continuous, as well as time-varying. We apply the proposed approach to the ECOG quality-of-life data and conduct a small simulation study evaluating the performance of the maximum likelihood estimates. Our results indicate that a patient treated with the vaccine has a higher QOL score on average at a given time point than a patient treated with high-dose interferon.
Similar articles
-
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053. Int J Biostat. 2017. PMID: 28441139
-
Likelihood methods for incomplete longitudinal binary responses with incomplete categorical covariates.Biometrics. 1999 Mar;55(1):214-23. doi: 10.1111/j.0006-341x.1999.00214.x. Biometrics. 1999. PMID: 11318157
-
Monte Carlo EM for missing covariates in parametric regression models.Biometrics. 1999 Jun;55(2):591-6. doi: 10.1111/j.0006-341x.1999.00591.x. Biometrics. 1999. PMID: 11318219
-
Cure rate models for heterogeneous competing causes.Stat Methods Med Res. 2023 Sep;32(9):1823-1841. doi: 10.1177/09622802231188514. Epub 2023 Jul 25. Stat Methods Med Res. 2023. PMID: 37489264 Review.
-
Marginal variable screening for survival endpoints.Biom J. 2020 May;62(3):610-626. doi: 10.1002/bimj.201800269. Epub 2019 Aug 26. Biom J. 2020. PMID: 31448463 Review.
Cited by
-
Performance of methods for handling missing categorical covariate data in population pharmacokinetic analyses.AAPS J. 2012 Sep;14(3):601-11. doi: 10.1208/s12248-012-9373-2. Epub 2012 May 31. AAPS J. 2012. PMID: 22648902 Free PMC article.
-
Missing data methods in longitudinal studies: a review.Test (Madr). 2009 May 1;18(1):1-43. doi: 10.1007/s11749-009-0138-x. Test (Madr). 2009. PMID: 21218187 Free PMC article.
-
Theory and Inference for Regression Models with Missing Responses and Covariates.J Multivar Anal. 2008 Jul;99(6):1302-1331. doi: 10.1016/j.jmva.2007.08.009. J Multivar Anal. 2008. PMID: 19169388 Free PMC article.
-
Functional and Structural Methods with Mixed Measurement Error and Misclassification in Covariates.J Am Stat Assoc. 2015 Jun 1;110(510):681-696. doi: 10.1080/01621459.2014.922777. J Am Stat Assoc. 2015. PMID: 26190876 Free PMC article.
-
Bias and Efficiency Comparison between Multiple Imputation and Available-Case Analysis for Missing Data in Longitudinal Models.Stat Biosci. 2025 Jun 12:10.1007/s12561-025-09493-6. doi: 10.1007/s12561-025-09493-6. Online ahead of print. Stat Biosci. 2025. PMID: 40821499 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources