Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;11(2):171-83.
doi: 10.1093/treephys/11.2.171.

Absorption and assimilation of nitrate and ammonium ions by jack pine seedlings

Affiliations

Absorption and assimilation of nitrate and ammonium ions by jack pine seedlings

N Lavoie et al. Tree Physiol. 1992 Sep.

Abstract

Jack pine (Pinus banksiana Lamb.) seedlings were grown in a shaded or unshaded light regime with either NO(3) (-)- or NH(4) (+)-N as the sole N source. After three months, seedlings grown with NH(4) (+)-N were larger than seedlings grown with NO(3) (-)-N. Irradiance had a greater effect on growth of ammonium-fed seedlings than on growth of nitrate-fed seedlings.At all times from 6 to 24 h following incorporation of (15)N, soluble, insoluble, and total (15)N contents of shoots and roots were higher in ammonium-fed seedlings than in nitrate-fed seedlings. The pattern of (15)N accumulation in shoots was similar to that in roots. After 6 and 24 h of (15)N incorporation, unshaded, ammonium-fed seedlings had 8.8 and 2.8 times greater total (15)N contents, respectively, than unshaded, nitrate-fed seedlings. In response to shading, ammonium-fed seedlings increased their total uptake of (15)N per unit root weight, whereas nitrate-fed seedlings did not. No nitrate or (15)NO(3) (-) was detected in any plant tissue. Nitrate-fed plants had higher NH(4) (+), Asp, and Gln concentrations in needles and higher gamma-aminobutyric acid and Arg concentrations in stems. Accumulation of (15)N in roots was not affected by the pH of the (15)N solution or by the N source fed to the seedlings before the period of (15)N incorporation. Thus NO(3) (-) transport into roots, rather than its reduction or transport within the plant, seems to be the factor limiting the growth of jack pine supplied with NO(3) (-)-N as the sole N source.

PubMed Disclaimer

LinkOut - more resources