Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jun;10(4):411-5.
doi: 10.1093/treephys/10.4.411.

Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoides

Affiliations

Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoides

M T Tyree et al. Tree Physiol. 1992 Jun.

Abstract

Despite many studies of the percent loss of hydraulic conductivity in excised branches, there is doubt as to whether cutting stems in air introduces unnatural embolism into the xylem at the cut surface. To address this question, hydraulic conductivity was measured in seedlings of northern red oak (Quercus rubra L.) and rooted scions of eastern cottonwood (Populus deltoides Bartr. ex Marsh.) that had been droughted in pots. Results indicate that in situ dehydration produced a very similar vulnerability curve (% loss of conductivity versus water potential) to those previously obtained by bench-top dehydration of excised branches of eastern cottonwood and red oak. In eastern cottonwood cuttings, conductivity loss increased sharply below water potentials of -1.0 MPa, with 100% loss of conductivity occurring by -2.0 MPa, whereas conductivity loss in red oak seedlings was more gradual, i.e., increasing below -1.5 MPa and sustaining 100% loss of conductivity by about -4.0 MPa.

PubMed Disclaimer

LinkOut - more resources