Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 25;126(7):2247-56.
doi: 10.1021/ja038721w.

NMR R1 rho rotating-frame relaxation with weak radio frequency fields

Affiliations

NMR R1 rho rotating-frame relaxation with weak radio frequency fields

Francesca Massi et al. J Am Chem Soc. .

Abstract

NMR spin relaxation in the rotating frame (R(1 rho)) is one of few methods available to characterize chemical exchange kinetic processes occurring on micros-ms time scales. R(1 rho) measurements for heteronuclei in biological macromolecules generally require decoupling of (1)H scalar coupling interactions and suppression of cross-relaxation processes. Korzhnev and co-workers demonstrated that applying conventional (1)H decoupling schemes while the heteronuclei are spin-locked by a radio frequency (rf) field results in imperfect decoupling [Korzhnev, Skrynnikov, Millet, Torchia, Kay. J. Am. Chem. Soc. 2002, 124, 10743-10753]. Experimental NMR pulse sequences were presented that provide accurate measurements of R(1 rho) rate constants for radio frequency field strengths > 1000 Hz. This paper presents new two-dimensional NMR experiments that allow the use of weak rf fields, between 150 and 1000 Hz, in R(1 rho) experiments. Fourier decomposition and average Hamiltonian theory are employed to analyze the spin-lock sequence and provide a guide for the development of improved experiments. The new pulse sequences are validated using ubiquitin and basic pancreatic trypsin inhibitor (BPTI). The use of weak spin-lock fields in R(1 rho) experiments allows the study of the chemical exchange process on a wider range of time scales, bridging the gap that currently exists between Carr-Purcell-Meiboom-Gill and conventional R(1 rho) experiments. The new experiments also extend the capability of the R(1 rho) technique to study exchange processes outside the fast exchange limit.

PubMed Disclaimer

Publication types

LinkOut - more resources