Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar;8(2):205-11.
doi: 10.1093/treephys/8.2.205.

Net photosynthesis and leaf conductance of loblolly pine seedlings in 2 and 21% oxygen as influenced by irradiance, temperature and provenance

Affiliations

Net photosynthesis and leaf conductance of loblolly pine seedlings in 2 and 21% oxygen as influenced by irradiance, temperature and provenance

L J Samuelson et al. Tree Physiol. 1991 Mar.

Abstract

Carbon dioxide assimilation and transpiration by secondary needles of two-year-old loblolly pines (Pinus taeda L.) were measured at 2 and 21% (ambient) oxygen. Measurements were made with a Georgia provenance at irradiances (photosynthetic photon flux density) of 150, 300, 700 and 1200 micromol m(-2) s(-1) and a constant temperature of 25 degrees C, and at temperatures of 15, 25 and 35 degrees C and a constant irradiance of 1200 micromol m(-2) s(-1). Measurements were made with provenances from North Carolina, Florida, Arkansas, and Georgia at 25 degrees C and an irradiance of 1200 micromol m(-2) s(-1). There was no significant interaction between the effects of irradiance and oxygen on either net photosynthesis or leaf conductance. Taking all irradiances together, photosynthesis was 16% less and leaf conductance 28% less in 2% oxygen than in 21% oxygen. There was a significant interaction between the effects of temperature and oxygen concentration on both net assimilation and leaf conductance. Net photosynthesis at 21% oxygen relative to that at 2% was significantly reduced at 25 and 35 degrees C, but not at 15 degrees C, whereas leaf conductance at 21% oxygen relative to that at 2% was significantly increased at 15 and 25 degrees C, but not at 35 degrees C. In the provenance study, net photosynthesis was 11% higher and leaf conductance 36% lower in 2% oxygen than in 21% oxygen. There was no significant interaction between the effects of provenance and oxygen on either net photosynthesis or leaf conductance.

PubMed Disclaimer

LinkOut - more resources