Development of surface adhesion in Caulobacter crescentus
- PMID: 14973013
- PMCID: PMC344395
- DOI: 10.1128/JB.186.5.1438-1447.2004
Development of surface adhesion in Caulobacter crescentus
Abstract
Caulobacter crescentus has a dimorphic life cycle composed of a motile stage and a sessile stage. In the sessile stage, C. crescentus is often found tightly attached to a surface through its adhesive holdfast. In this study, we examined the contribution of growth and external structures to the attachment of C. crescentus to abiotic surfaces. We show that the holdfast is essential but not sufficient for optimal attachment. Rather, adhesion in C. crescentus is a complex developmental process. We found that the attachment of C. crescentus to surfaces is cell cycle regulated and that growth or energy or both are essential for this process. The initial stage of attachment occurs in swarmer cells and is facilitated by flagellar motility and pili. Our results suggest that strong attachment is mediated by the synthesis of a holdfast as the swarmer cell differentiates into a stalked cell.
Figures




Similar articles
-
Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.J Bacteriol. 2004 Dec;186(24):8254-66. doi: 10.1128/JB.186.24.8254-8266.2004. J Bacteriol. 2004. PMID: 15576774 Free PMC article.
-
Flagellar Perturbations Activate Adhesion through Two Distinct Pathways in Caulobacter crescentus.mBio. 2021 Feb 9;12(1):e03266-20. doi: 10.1128/mBio.03266-20. mBio. 2021. PMID: 33563824 Free PMC article.
-
Role of Caulobacter Cell Surface Structures in Colonization of the Air-Liquid Interface.J Bacteriol. 2019 Aug 22;201(18):e00064-19. doi: 10.1128/JB.00064-19. Print 2019 Sep 15. J Bacteriol. 2019. PMID: 31010900 Free PMC article.
-
Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.FEMS Microbiol Rev. 2000 Apr;24(2):177-91. doi: 10.1016/S0168-6445(99)00035-2. FEMS Microbiol Rev. 2000. PMID: 10717313 Review.
-
Regulation of cellular differentiation in Caulobacter crescentus.Microbiol Rev. 1995 Mar;59(1):31-47. doi: 10.1128/mr.59.1.31-47.1995. Microbiol Rev. 1995. PMID: 7708011 Free PMC article. Review.
Cited by
-
eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system.Elife. 2023 Jan 19;12:e80808. doi: 10.7554/eLife.80808. Elife. 2023. PMID: 36475544 Free PMC article.
-
Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus.J Bacteriol. 2006 Oct;188(19):6841-50. doi: 10.1128/JB.00111-06. J Bacteriol. 2006. PMID: 16980487 Free PMC article.
-
Flagellar Mutants Have Reduced Pilus Synthesis in Caulobacter crescentus.J Bacteriol. 2019 Aug 22;201(18):e00031-19. doi: 10.1128/JB.00031-19. Print 2019 Sep 15. J Bacteriol. 2019. PMID: 30833355 Free PMC article.
-
Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps.J Bacteriol. 2008 Nov;190(21):7219-31. doi: 10.1128/JB.01003-08. Epub 2008 Aug 29. J Bacteriol. 2008. PMID: 18757530 Free PMC article.
-
Getting in the loop: regulation of development in Caulobacter crescentus.Microbiol Mol Biol Rev. 2010 Mar;74(1):13-41. doi: 10.1128/MMBR.00040-09. Microbiol Mol Biol Rev. 2010. PMID: 20197497 Free PMC article. Review.
References
-
- Brun, Y., G. Marczynski, and L. Shapiro. 1994. The expression of asymmetry during cell differentiation. Annu. Rev. Biochem. 63:419-450. - PubMed
-
- Brun, Y. V., and L. J. Shimkets. 2000. Prokaryotic development. American Society for Microbiology, Washington, D.C.
-
- Cole, J., G. G. Hardy, D. Bodenmiller, E. Toh, A. Hinz, and Y. V. Brun. 2003. The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk. Mol. Microbiol. 49:1671-1683. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources