Drosophila Twins regulates Armadillo levels in response to Wg/Wnt signal
- PMID: 14973271
- DOI: 10.1242/dev.00980
Drosophila Twins regulates Armadillo levels in response to Wg/Wnt signal
Abstract
Protein Phosphatase 2A (PP2A) has a heterotrimeric-subunit structure, consisting of a core dimer of approximately 36 kDa catalytic and approximately 65 kDa scaffold subunits complexed to a third variable regulatory subunit. Several studies have implicated PP2A in Wg/Wnt signaling. However, reports on the precise nature of PP2A role in Wg/Wnt pathway in different organisms are conflicting. We show that twins (tws), which codes for the B/PR55 regulatory subunit of PP2A in Drosophila, is a positive regulator of Wg/Wnt signaling. In tws(-) wing discs both short- and long-range targets of Wingless morphogen are downregulated. Analyses of tws(-) mitotic clones suggest that requirement of Tws in Wingless pathway is cell-autonomous. Epistatic genetic studies indicate that Tws functions downstream of Dishevelled and upstream of Sgg and Armadillo. Our results suggest that Tws is required for the stabilization of Armadillo/beta-catenin in response to Wg/Wnt signaling. Interestingly, overexpression of, otherwise normal, Tws protein induce dominant-negative phenotypes. The conflicting reports on the role of PP2A in Wg/Wnt signaling could be due to the dominant-negative effect caused by the overexpression of one of the subunits.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
