Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays
- PMID: 14973328
- PMCID: PMC373430
- DOI: 10.1093/nar/gnh036
Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays
Abstract
The effect of locked nucleic acid (LNA) modification position upon representative DNA polymerase and exonuclease activities has been examined for potential use in primer extension genotyping applications. For the 3'-->5' exonuclease activities of four proofreading DNA polymerases (Vent, Pfu, Klenow fragment and T7 DNA polymerase) as well as exonuclease III, an LNA at the terminal (L-1) position of a primer is found to provide partial protection against the exonucleases of the two family B polymerases only. In contrast, an LNA residue at the penultimate (L-2) position generates essentially complete nuclease resistance. The polymerase active sites of these enzymes also display a distinct preference. An L-1 LNA modification has modest effects upon poly merization, but an L-2 LNA group slows dTTP incorporation somewhat while virtually abolishing extension with ddTTP or acyTTP terminators, even with A488L Vent DNA polymerase engineered for terminator incorporation. These observations on active site preference have been utilized to demonstrate two novel assays: exonuclease-mediated single base extension (E-SBE) and proofreading allele-specific extension (PRASE). We show that a model PRASE genotyping reaction with L-2 LNA primers offers greater specificity than existing non-proofreading assays, whether or not the non-proofreading reaction employs LNA-modified primers.
Figures






Similar articles
-
Single nucleotide polymorphism genotyping using locked nucleic acid (LNA).Expert Rev Mol Diagn. 2003 Jan;3(1):27-38. doi: 10.1586/14737159.3.1.27. Expert Rev Mol Diagn. 2003. PMID: 12528362 Review.
-
Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.Biochemistry. 2006 Oct 24;45(42):12786-95. doi: 10.1021/bi0609117. Biochemistry. 2006. PMID: 17042497
-
Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site.J Mol Biol. 2009 Sep 4;391(5):797-807. doi: 10.1016/j.jmb.2009.06.068. Epub 2009 Jul 1. J Mol Biol. 2009. PMID: 19576228
-
Novel applications of locked nucleic acids.Nucleic Acids Symp Ser (Oxf). 2007;(51):29-30. doi: 10.1093/nass/nrm015. Nucleic Acids Symp Ser (Oxf). 2007. PMID: 18029570
-
Proofreading genotyping assays mediated by high fidelity exo+ DNA polymerases.Trends Biotechnol. 2005 Feb;23(2):92-6. doi: 10.1016/j.tibtech.2004.12.009. Trends Biotechnol. 2005. PMID: 15661346 Review.
Cited by
-
PANDAA intentionally violates conventional qPCR design to enable durable, mismatch-agnostic detection of highly polymorphic pathogens.Commun Biol. 2021 Feb 18;4(1):227. doi: 10.1038/s42003-021-01751-9. Commun Biol. 2021. PMID: 33603155 Free PMC article.
-
Measurable Residual Disease Monitoring by Locked Nucleic Acid Quantitative Real-Time PCR Assay for IDH1/2 Mutation in Adult AML.Cancers (Basel). 2022 Dec 15;14(24):6205. doi: 10.3390/cancers14246205. Cancers (Basel). 2022. PMID: 36551690 Free PMC article.
-
Selectivity of Enzymatic Conversion of Oligonucleotide Probes during Nucleotide Polymorphism Analysis of DNA.Acta Naturae. 2010 Apr;2(1):36-53. Acta Naturae. 2010. PMID: 22649627 Free PMC article.
-
Characterization of polybacterial clinical samples using a set of group-specific broad-range primers targeting the 16S rRNA gene followed by DNA sequencing and RipSeq analysis.J Med Microbiol. 2011 Jul;60(Pt 7):927-936. doi: 10.1099/jmm.0.028373-0. Epub 2011 Mar 24. J Med Microbiol. 2011. PMID: 21436365 Free PMC article.
-
Wild‑type blocking pcr coupled with internal competitive amplified fragment improved the detection of rare mutation of KRAS.Mol Med Rep. 2017 Sep;16(3):2726-2732. doi: 10.3892/mmr.2017.6883. Epub 2017 Jun 29. Mol Med Rep. 2017. PMID: 28677778 Free PMC article.
References
-
- Singh S.K., Nielsen,P., Koshkin,A.A. and Wengel,J. (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem. Commun., 4, 455–456.
-
- Obika S., Uneda,T., Sugimoto,T., Nanbu,D., Minami,T., Doi,T. and Imanishi,T. (2001) 2′-O,4′-C-methylene bridged nucleic acid (2′,4′-BNA): synthesis and triplex-forming properties. Bioorg. Med. Chem., 9, 1001–1011. - PubMed
-
- Morita K., Hasegawa,C., Kaneko,M., Tsutsumi,S., Sone,J., Ishikawa,T. and Imanishi,T. (2002) 2′-O,4′-C-ethylene-bridged nucleic acid (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drugs. Bioorg. Med. Chem. Lett., 12, 73–76. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources