Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 23;279(17):18091-7.
doi: 10.1074/jbc.M311786200. Epub 2004 Feb 19.

In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions

Affiliations
Free article

In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions

Feng Miao et al. J Biol Chem. .
Free article

Abstract

The transcription factor NF-kappaB (NF-kappaB) plays a pivotal role in regulating inflammatory gene expression. Its effects are optimized by various coactivators including histone acetyltransferases (HATs) such as CBP/p300 and p/CAF. Evidence shows that high glucose (HG) conditions mimicking diabetes can activate the transcription of NF-kappaB-regulated inflammatory genes. However, the underlying in vivo transcription and nuclear chromatin remodeling events are unknown. We therefore carried out chromatin immunoprecipitation (ChIP) assays in monocytes to identify 1) chromatin factors bound to the promoters of tumor necrosis factor-alpha (TNF-alpha) and related NF-kappaB-regulated genes under HG or diabetic conditions, 2) specific lysine (Lys (K)) residues on histone H3 (HH3) and HH4 acetylated in this process. HG treatment of THP-1 monocytes increased the transcriptional activity of NF-kappaB p65, which was augmented by CBP/p300 and p/CAF. ChIP assays showed that HG increased the recruitment of NF-kappaB p65, CPB, and p/CAF to the TNF-alpha and COX-2 promoters. Interestingly, ChIP assays also demonstrated concomitant acetylation of HH3 at Lys(9) and Lys(14), and HH4 at Lys(5), Lys(8), and Lys(12) at the TNF-alpha and COX-2 promoters. Overexpression of histone deacetylase (HDAC) isoforms inhibited p65-mediated TNF-alpha transcription. In contrast, a HDAC inhibitor stimulated gene transcription and histone acetylation. Finally, we demonstrated increased HH3 acetylation at TNF-alpha and COX-2 promoters in human blood monocytes from type 1 and type 2 diabetic subjects relative to nondiabetic. These results show for the first time that diabetic conditions can increase in vivo recruitment of NF-kappaB and HATs, as well as histone acetylation at the promoters of inflammatory genes, leading to chromatin remodeling and transcription.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources