Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;18(6):771-2.
doi: 10.1096/fj.03-0921fje. Epub 2004 Feb 20.

Heme oxygenase-1-derived carbon monoxide protects hearts from transplant associated ischemia reperfusion injury

Affiliations

Heme oxygenase-1-derived carbon monoxide protects hearts from transplant associated ischemia reperfusion injury

Yorihiro Akamatsu et al. FASEB J. 2004 Apr.

Erratum in

  • FASEB J. 2004 Jul;18(10):1168

Abstract

Heme oxygenase-1 (HO-1) degrades heme into iron, biliverdin, and carbon monoxide (CO). HO-1 expression can be used therapeutically to ameliorate undesirable consequences of ischemia reperfusion injury (IRI), but the mechanism by which this occurs, remains to be established. Rat hearts, exposed to a prolonged period (24 h) of cold (4 degrees C) ischemia, failed to function upon transplantation into syngeneic recipients. Induction of HO-1 expression by administration of cobalt protoporphyrin IX (CoPPIX) to the graft donor restored graft function. Inhibition of HO-1 enzymatic activity, by administration of zinc protoporphyrin (ZnPPIX) at the time of transplantation, reversed the protective effect of HO-1. Exposure of the graft donor as well as the graft (during ischemia) to exogenous CO mimicked the protective effect of HO-1. This was associated with a significant reduction in the number of cells undergoing apoptosis in the graft with no apparent decrease of intravascular fibrin polymerization, platelet aggregation, or P-selectin expression. In conclusion, HO-1-derived CO prevents IRI associated with cardiac transplantation based on its antiapoptotic action. The observation that exposure of the donor and the graft to CO is sufficient to afford this protective effect should have important clinical implications in terms of preventing IRI associated with heart transplantation in humans.

PubMed Disclaimer

MeSH terms

LinkOut - more resources