Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug;9(2):229-36.
doi: 10.1016/0896-6273(92)90162-7.

A peptide derived from the Shaker B K+ channel produces short and long blocks of reconstituted Ca(2+)-dependent K+ channels

Affiliations

A peptide derived from the Shaker B K+ channel produces short and long blocks of reconstituted Ca(2+)-dependent K+ channels

C D Foster et al. Neuron. 1992 Aug.

Abstract

A 20 amino acid synthetic peptide, corresponding to the amino-terminal region of the Shaker B (ShB) K+ channel and responsible for its fast inactivation, can block large conductance Ca(2+)-dependent K+ channels from rat brain and muscle. The ShB inactivation peptide produces two kinetically distinct blocking events in these channels. At lower concentrations, it produces short blocks, and at higher concentrations long-lived blocks also appear. The L7E mutant peptide produces only infrequent short blocks (no long-lived blocks) at a much higher concentration. Internal tetraethylammonium competes with the peptide for the short block, which is also relieved by K+ influx. These results suggest that the peptide induces the short block by binding within the pore of Ca(2+)-dependent K+ channels. The long block is not affected by increased K+ influx, indicating that the binding site mediating this block may be different from that involved in the short block. The short block of Ca(2+)-dependent K+ channels and the inactivation of Shaker exhibit similar characteristics with respect to blocking affinity and open pore blockade. This suggests a conserved binding region for the peptide in the pore regions of these very different classes of K+ channel.

PubMed Disclaimer

Publication types

LinkOut - more resources