Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence
- PMID: 14980702
- DOI: 10.1016/j.freeradbiomed.2003.11.031
Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is involved in the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the maintenance of cellular redox balance. We previously showed that G6PD-deficient fibroblasts undergo growth retardation and premature cellular senescence. In the present study, we demonstrate abatement of both the intracellular G6PD activity and the ratio NADPH/NADP(+) during the serial passage of G6PD-deficient cells. This was accompanied by a significant increase in the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). This suggests that the lowered resistance to oxidative stress and accumulative oxidative damage may account for the premature senescence of these cells. Consistent with this, the G6PD-deficient cells had an increased propensity for hydrogen peroxide (H(2)O(2))-induced senescence; these cells exhibited such senescent phenotypes as large, flattened morphology and increased senescence-associated beta-galactosidase (SA-beta-Gal) staining. Decreases in both the intracellular G6PD activity and the NADPH/NADP(+) ratio were concomitant with an increase in 8-OHdG level in H(2)O(2)-induced senescent cells. Exogenous expression of G6PD protected the deficient cells from stress-induced senescence. No significant telomere shortening occurred upon repetitive treatment with H(2)O(2). Simultaneous induction of p16(INK4a) and p53 was detected in G6PD-deficient but not in normal fibroblasts during H(2)O(2)-induced senescence. Our findings support the notion that G6PD status, and thus proper redox balance, is a determinant of cellular senescence.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
