Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;136(1):122-33.
doi: 10.1016/j.ygcen.2003.11.008.

Molecular cloning of the estrogen and progesterone receptors of the American alligator

Affiliations

Molecular cloning of the estrogen and progesterone receptors of the American alligator

Yoshinao Katsu et al. Gen Comp Endocrinol. 2004 Mar.

Abstract

Steroid hormones perform many essential roles in vertebrates during embryonic development, reproduction, growth, water balance, and responses to stress. The estrogens are essential for normal reproductive activity in female and male vertebrates and appear to have direct actions during sex determination in some vertebrates. To begin to understand the molecular mechanisms of estrogen action in alligators, we have isolated cDNAs encoding the estrogen receptors (ER) from the ovary. Degenerate PCR primers specific to ER were designed and used to amplify alligator ovary RNA. Two different DNA fragments (ERalpha and ERbeta) were obtained and the full-length alligator ERalpha cDNA was obtained using 5' and 3' RACE. The inferred amino acid sequence of alligator ERalpha (aERalpha) was very similar to the chicken ERalpha (91% identity), although phylogenetic analyses suggested profound differences in the rate of sequence evolution for vertebrate ER sequences. We also isolated partial DNA fragments encoding ERbeta and the progesterone receptor (PR) of the alligator, both of which show strong sequence similarities to avian ERbeta and PR. We examined the expression levels of these three steroid receptors (ERalpha, ERbeta, and PR) in the ovary of juvenile alligators and observed detectable levels of all three receptors. Quantitative RT-PCR showed that gonadal ERalpha transcript levels in juvenile alligators decreased after E2 treatment whereas ERbeta and PR transcripts were not changed. These results provide tools that will allow future studies examining the regulation and ontogenic expression of steroid receptors in alligators and expand our knowledge of vertebrate steroid receptor evolution.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources