A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac
- PMID: 14981521
- DOI: 10.1038/ng1314
A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac
Abstract
With the availability of complete genome sequence for Drosophila melanogaster, one of the next strategic goals for fly researchers is a complete gene knockout collection. The P-element transposon, the workhorse of D. melanogaster molecular genetics, has a pronounced nonrandom insertion spectrum. It has been estimated that 87% saturation of the approximately 13,500-gene complement of D. melanogaster might require generating and analyzing up to 150,000 insertions. We describe specific improvements to the lepidopteran transposon piggyBac and the P element that enabled us to tag and disrupt genes in D. melanogaster more efficiently. We generated over 29,000 inserts resulting in 53% gene saturation and a more diverse collection of phenotypically stronger insertional alleles. We found that piggyBac has distinct global and local gene-tagging behavior from that of P elements. Notably, piggyBac excisions from the germ line are nearly always precise, piggyBac does not share chromosomal hotspots associated with P and piggyBac is more effective at gene disruption because it lacks the P bias for insertion in 5' regulatory sequences.
Comment in
-
Flying in the face of total disruption.Nat Genet. 2004 Mar;36(3):211-2. doi: 10.1038/ng0304-211. Nat Genet. 2004. PMID: 14988715 No abstract available.
Similar articles
-
Mutagenesis by imprecise excision of the piggyBac transposon in Drosophila melanogaster.Biochem Biophys Res Commun. 2012 Jan 6;417(1):335-9. doi: 10.1016/j.bbrc.2011.11.110. Epub 2011 Dec 1. Biochem Biophys Res Commun. 2012. PMID: 22155246
-
piggyBac internal sequences are necessary for efficient transformation of target genomes.Insect Mol Biol. 2005 Jan;14(1):17-30. doi: 10.1111/j.1365-2583.2004.00525.x. Insect Mol Biol. 2005. PMID: 15663772
-
Minos as a genetic and genomic tool in Drosophila melanogaster.Genetics. 2005 Oct;171(2):571-81. doi: 10.1534/genetics.105.041848. Epub 2005 Jun 21. Genetics. 2005. PMID: 15972463 Free PMC article.
-
Transposable elements as tools for genomics and genetics in Drosophila.Brief Funct Genomic Proteomic. 2003 Apr;2(1):57-71. doi: 10.1093/bfgp/2.1.57. Brief Funct Genomic Proteomic. 2003. PMID: 15239944 Review.
-
Emerging technologies for gene manipulation in Drosophila melanogaster.Nat Rev Genet. 2005 Mar;6(3):167-78. doi: 10.1038/nrg1553. Nat Rev Genet. 2005. PMID: 15738961 Review.
Cited by
-
Behavioral and circuit basis of sucrose rejection by Drosophila females in a simple decision-making task.J Neurosci. 2015 Jan 28;35(4):1396-410. doi: 10.1523/JNEUROSCI.0992-14.2015. J Neurosci. 2015. PMID: 25632118 Free PMC article.
-
FlyNet: a versatile network prioritization server for the Drosophila community.Nucleic Acids Res. 2015 Jul 1;43(W1):W91-7. doi: 10.1093/nar/gkv453. Epub 2015 May 5. Nucleic Acids Res. 2015. PMID: 25943544 Free PMC article.
-
Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells.PLoS Biol. 2012;10(12):e1001438. doi: 10.1371/journal.pbio.1001438. Epub 2012 Dec 4. PLoS Biol. 2012. PMID: 23226104 Free PMC article.
-
A role for the cytoplasmic DEAD box helicase Dbp21E2 in rhodopsin maturation and photoreceptor viability.J Neurogenet. 2012 Jun;26(2):177-88. doi: 10.3109/01677063.2012.692412. J Neurogenet. 2012. PMID: 22794106 Free PMC article.
-
PBmice: an integrated database system of piggyBac (PB) insertional mutations and their characterizations in mice.Nucleic Acids Res. 2008 Jan;36(Database issue):D729-34. doi: 10.1093/nar/gkm790. Epub 2007 Oct 11. Nucleic Acids Res. 2008. PMID: 17932058 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases