Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov-Dec;23(6C):4765-72.

Conjugated linoleic acid inhibits DNA synthesis and induces apoptosis in TSU-Pr1 human bladder cancer cells

Affiliations
  • PMID: 14981924

Conjugated linoleic acid inhibits DNA synthesis and induces apoptosis in TSU-Pr1 human bladder cancer cells

Yoon S Oh et al. Anticancer Res. 2003 Nov-Dec.

Abstract

Background: Conjugated linoleic acid (CLA) has strong chemoprotective properties in experimental animal models. The insulin-like growth factor (IGF) system has been implicated as a risk factor for the development of bladder cancer. The present study examined CLA regulation of TSU-Pr1 bladder cancer cell proliferation and apoptosis and the influence of CLA on IGF-I receptor (IGF-IR) signaling.

Materials and methods: TSU-Pr1 cells were cultured in serum-free medium with 0, 2, 5, or 10 microM CLA and/or 10 nM IGF-I. [3H]Thymidne incorporation, DNA laddering, FACS analysis, immunoprecipitation and Western blotting were performed.

Results: CLA decreased DNA synthesis and induced apoptosis in TSU-Pr1 cells dose-dependently. Exogenous IGF-I alone increased viable cell numbers but did not counteract growth inhibition induced by CLA. CLA decreased IGF-IR and insulin receptor substrate (IRS)-1 protein levels. In addition, CLA decreased IGF-I-induced phosphorylation of IGF-IR and IRS-1, recruitment of the p85 subunit of phosphoinositide 3-kinase to IRS-1 and phosphorylation of Akt and extracellular signal-regulated kinase-1/2.

Conclusion: These results suggest that CLA inhibits cell proliferation and stimulates apoptosis of TSU-Pr1 cells via its inhibition of the IGF-IR signaling pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms