Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Mar;161(3):299-311.
doi: 10.1667/rr3128.

Gene expression profile in human late radiation enteritis obtained by high-density cDNA array hybridization

Affiliations
Clinical Trial

Gene expression profile in human late radiation enteritis obtained by high-density cDNA array hybridization

Marie-Catherine Vozenin-Brotons et al. Radiat Res. 2004 Mar.

Abstract

Late radiation enteritis is a sequela of radiation therapy to the abdomen. The pathogenic process is poorly understood at the molecular level. cDNA array analysis was used to provide new insights into the pathogenesis of this disorder. Gene profiles of six samples of fibrotic bowel tissue from patients with radiation enteritis and six healthy bowel tissue samples from patients without radiation enteritis were compared using membrane-based arrays containing 1314 cDNAs. Results were confirmed with real-time RT-PCR and Western blot analysis. Array analysis identified many differentially expressed genes involved in fibrosis, stress response, inflammation, cell adhesion, intracellular and nuclear signaling, and metabolic pathways. Increased expression of genes coding for proteins involved in the composition and remodeling of the extracellular matrix, along with altered expression of genes involved in cell- to-cell and cell-to-matrix interactions, were observed mainly in radiation enteritis samples. Stress, inflammatory responses, and antioxidant metabolism were altered in radiation enteritis as were genes coding for recruitment of lymphocytes and macrophages. The Rho/HSP27 (HSPB1)/zyxin pathway, involved in tissue contraction and myofibroblast transdifferentiation, was also altered in radiation enteritis, suggesting that this pathway could be related to the fibrogenic process. Our results provide a global and integrated view of the alteration of gene expression associated with radiation enteritis. They suggest that radiation enteritis is a dynamic process involving constant remodeling of each structural component of the intestinal tissue, i.e. the mucosa, the mesenchyme, and blood vessels. Functional studies will be necessary to validate the present results.

PubMed Disclaimer