Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;16(12):993-1003.
doi: 10.1093/protein/gzg122.

Structure-function discrimination of the N- and C- catalytic domains of human angiotensin-converting enzyme: implications for Cl- activation and peptide hydrolysis mechanisms

Affiliations

Structure-function discrimination of the N- and C- catalytic domains of human angiotensin-converting enzyme: implications for Cl- activation and peptide hydrolysis mechanisms

Andreas G Tzakos et al. Protein Eng. 2003 Dec.

Abstract

Human somatic angiotensin I-converting enzyme (sACE) has two active sites present in two sequence homologous protein domains (ACE_N and ACE_C) possessing several biochemical features that differentiate the two active sites (i.e. chloride ion activation). Based on the recently solved X-ray structure of testis angiotensin-converting enzyme (tACE), the 3D structure of ACE_N was modeled. Electrostatic potential calculations reveal that the ACE_N binding groove is significantly more positively charged than the ACE_C, which provides a first rationalization for their functional discrimination. The chloride ion pore for Cl2 (one of the two chloride ions revealed in the X-ray structure of tACE) that connects the external solution with the inner part of the protein was identified on the basis of an extended network of water molecules. Comparison of ACE_C with the X-ray structure of the prokaryotic ClC Cl(-) channel from Salmonella enterica serovar typhimurium demonstrates a common molecular basis of anion selectivity. The critical role for Cl2 as an ionic switch is emphasized. Sequence and structural comparison between ACE_N and ACE_C and of other proteins of the gluzincin family highlights key residues that could be responsible for the peptide hydrolysis mechanism. Currently available mutational and substrate hydrolysis data for both domains are evaluated and are consistent with the predicted model.

PubMed Disclaimer

LinkOut - more resources