Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;53(4):657-9.
doi: 10.1093/jac/dkh122. Epub 2004 Feb 25.

Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204

Affiliations

Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204

Sylvie Baucheron et al. J Antimicrob Chemother. 2004 Apr.

Abstract

Objectives: To study the role of TolC and of parC mutation in high-level fluoroquinolone resistance in clonal clinical strains of Salmonella enterica serotype Typhimurium phage type DT204 (S. Typhimurium DT204).

Methods: Deletion of the tolC gene (DeltatolC) was first performed in a susceptible S. Typhimurium DT104 strain lacking target gene mutations involved in fluoroquinolone resistance. P22 transduction was further used to transduce DeltatolC from this strain to a high-level fluoroquinolone-resistant S. Typhimurium DT204 strain carrying several target gene mutations, including one in parC (ciprofloxacin MIC of 32 mg/L).

Results: Deletion of tolC in the high-level fluoroquinolone-resistant S. Typhimurium DT204 strain resulted in the same decrease in resistance levels (16- to 32-fold) as shown previously for an acrB mutant of the same strain, suggesting that AcrAB-TolC is the main efflux system involved in high-level fluoroquinolone resistance of S. Typhimurium DT204 strains. In some S. Typhimurium DT204 DeltatolC transductants, concomitant loss of the parC (Ser-80-->Ile) mutation, located approximately 9.3 kb upstream of tolC, resulted in a further 16- to 32-fold decrease in resistance levels to fluoroquinolones and thus a hypersusceptible phenotype (ciprofloxacin MIC of 0.063 mg/L).

Conclusion: The AcrAB-TolC efflux system, together with multiple target gene mutations, including the parC mutation, appear essential to confer high-level fluoroquinolone resistance in S. Typhimurium DT204.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources