Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;3(2):179-86.

R115777 induces Ras-independent apoptosis of myeloma cells via multiple intrinsic pathways

Affiliations
  • PMID: 14985458

R115777 induces Ras-independent apoptosis of myeloma cells via multiple intrinsic pathways

Darrin M Beaupre et al. Mol Cancer Ther. 2004 Feb.

Abstract

Ras activation is frequently observed in multiple myeloma either by mutation or through interleukin-6 receptor signaling. Recently, drugs designed to inhibit Ras have shown promise in preclinical myeloma models and in clinical trials. In this report, we characterize the pathways by which the clinically tested farnesyl transferase inhibitor (FTI) R115777 induces apoptosis in multiple myeloma cells. Contrary to the proposed mechanistic action of FTIs, we found that R115777 induces cell death despite Ras prenylation implying participation of Ras-independent mechanism(s). Apoptosis proceeded via an intrinsic cascade and was associated with an increase in the expression and activity of Bax. Bax activation correlated with a loss of mitochondrial membrane integrity and activation of the endoplasmic reticulum (ER) stress response. These pathways activate caspase-9 and consistent with this, cell death was prevented by caspase-9 blockade. Interestingly, cells overexpressing Bcl-X(L) remained partially sensitive to R115777 despite suppression of mitochondrial membrane dysfunction and ER-related stress. Taken together, these results indicate that R115777 induces apoptosis in a Ras-independent fashion via multiple intrinsic pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances