Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 26;427(6977):817-21.
doi: 10.1038/nature02277.

Atomic transient recorder

Affiliations

Atomic transient recorder

R Kienberger et al. Nature. .

Abstract

In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10(-18) s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this scale. The recent observation of single sub-femtosecond (1 fs = 10(-15) s) extreme ultraviolet (XUV) light pulses has stimulated the extension of techniques of femtochemistry into the attosecond regime. Here we demonstrate the generation and measurement of single 250-attosecond XUV pulses. We use these pulses to excite atoms, which in turn emit electrons. An intense, waveform-controlled, few cycle laser pulse obtains 'tomographic images' of the time-momentum distribution of the ejected electrons. Tomographic images of primary (photo)electrons yield accurate information of the duration and frequency sweep of the excitation pulse, whereas the same measurements on secondary (Auger) electrons will provide insight into the relaxation dynamics of the electronic shell following excitation. With the current approximately 750-nm laser probe and approximately 100-eV excitation, our transient recorder is capable of resolving atomic electron dynamics within the Bohr orbit time.

PubMed Disclaimer

LinkOut - more resources