Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Mar;167(1):161-7.
doi: 10.1016/j.jmr.2003.12.008.

Distribution effects on 1H double-quantum MAS NMR spectra

Affiliations
Comparative Study

Distribution effects on 1H double-quantum MAS NMR spectra

G P Holland et al. J Magn Reson. 2004 Mar.

Abstract

The effect of a distribution in the (1)H-(1)H dipolar coupling on (1)H double-quantum (DQ) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spinning sideband patterns is considered. In disordered or amorphous materials a distribution in the magnitude of the (1)H-(1)H dipolar coupling is a realistic possibility. Simulations of the (1)H DQ MAS NMR spinning sideband spectra were performed with the two-spin approximation. These simulations reveal that a dipolar coupling distribution can greatly affect the DQ spectral shape and behavior of the DQ build-up. The spectral line shapes are quantified by measurement of the relative intensities of the DQ sidebands. These variations in the (1)H DQ NMR spectra are evaluated as a function of the width of the dipolar coupling distribution. As an example, the experimental DQ spinning sideband spectrum for a hydrated polyoxoniobate containing 15 H(2)O molecules per hexaniobate cluster, are better simulated with a distribution of dipolar couplings opposed to a single coupling constant.

PubMed Disclaimer

Publication types

LinkOut - more resources