Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;53(3):762-8.
doi: 10.2337/diabetes.53.3.762.

Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction

Affiliations

Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction

Frederick R DeRubertis et al. Diabetes. 2004 Mar.

Abstract

The effects of overexpression of Cu(2+)/Zn(2+) superoxide dismutase-1 (SOD-1) on indexes of renal injury were compared in 5-month-old nontransgenic (NTg) db/db mice and db/db mice hemizygous for the human SOD-1 transgene (SOD-Tg). Both diabetic groups exhibited similar hyperglycemia and weight gain. However, in NTg-db/db mice, albuminuria, glomerular accumulation of immunoreactive transforming growth factor-beta, collagen alpha1(IV), nitrotyrosine, and mesangial matrix were all significantly increased compared with either nondiabetic mice or SOD-Tg-db/db. SOD-1 activity and reduced glutathione levels were higher, whereas malondialdehyde content was lower, in the renal cortex of SOD-Tg-db/db compared with NTg-db/db mice, consistent with a renal antioxidant effect in the transgenic mice. Inulin clearance (C(IN)) and urinary excretion of guanosine 3',5'-cyclic monophosphate (U(cGMP)) were increased in SOD-Tg-db/db mice compared with corresponding values in nondiabetic mice or NTg-db/db mice. C(IN) and U(cGMP) were suppressed by Nomega-nitro-L-arginine methyl ester in SOD-Tg-db/db but not in NTg-db/db mice, implying nitric oxide (NO) dependence of these increases and enhanced renal NO bioactivity in SOD-Tg-db/db. Studies of NO-responsive cGMP in isolated glomeruli supported greater quenching of NO in glomeruli from NTg-db/db compared with SOD-Tg-db/db mice. Evidence of increased NO responsiveness and the suppression of glomerular nitrotyrosine may both reflect reduced NO-superoxide interaction in SOD-Tg-db/db mice. The results implicate superoxide in the pathogenesis of diabetic nephropathy.

PubMed Disclaimer

Publication types

MeSH terms