Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;81(2):105-14.
doi: 10.1016/j.nlm.2003.10.003.

NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task

Affiliations

NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task

B L Woodside et al. Neurobiol Learn Mem. 2004 Mar.

Abstract

Activity dependent calcium entry into neurons can initiate a form of synaptic plasticity called long-term potentiation (LTP). This phenomenon is considered by many to be one possible cellular mechanism underlying learning and memory. The calcium entry that induces this phenomenon can occur when N-methyl-D-aspartate receptors (NMDARs) and/or voltage-dependent calcium channels (VDCCs) are activated. While much is known about synaptic plasticity and the mechanisms that are triggered by activation of these two Ca(2+) channels, it is unclear what roles they play in learning. To better understand the role activation of these channels may play in learning we systemically administered pharmacological antagonists to block NMDARs, VDCCs, or both during training trials and retention tests in a radial arm maze task. Wistar rats injected with the NMDAR antagonist MK-801 (0.1mg/kg) were impaired in the acquisition of this task. In contrast, rats injected with verapamil (10mg/kg), an antagonist to VDCCs, acquired the task at the same rate as control animals, but were impaired on a 10-day retention test. A group of animals injected with both antagonists were unable to learn the task. The results suggest that each of the calcium channels and the processes they trigger are involved in a different stage of memory formation or expression.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources