Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;31(2):314-26.
doi: 10.1118/1.1637972.

Computer-aided diagnosis of mammographic microcalcification clusters

Affiliations

Computer-aided diagnosis of mammographic microcalcification clusters

Maria Kallergi. Med Phys. 2004 Feb.

Abstract

Computer-aided diagnosis techniques in medical imaging are developed for the automated differentiation between benign and malignant lesions and go beyond computer-aided detection by providing cancer likelihood for a detected lesion given image and/or patient characteristics. The goal of this study was the development and evaluation of a computer-aided detection and diagnosis algorithm for mammographic calcification clusters. The emphasis was on the diagnostic component, although the algorithm included automated detection, segmentation, and classification steps based on wavelet filters and artificial neural networks. Classification features were selected primarily from descriptors of the morphology of the individual calcifications and the distribution of the cluster. Thirteen such descriptors were selected and, combined with patient's age, were given as inputs to the network. The features were ranked and evaluated for the classification of 100 high-resolution, digitized mammograms containing biopsy-proven, benign and malignant calcification clusters. The classification performance of the algorithm reached a 100% sensitivity for a specificity of 85% (receiver operating characteristic area index Az = 0.98 +/- 0.01). Tests of the algorithm under various conditions showed that the selected features were robust morphological and distributional descriptors, relatively insensitive to segmentation and detection errors such as false positive signals. The algorithm could exceed the performance of a similar visual analysis system that was used as basis for development and, combined with a simple image standardization process, could be applied to images from different imaging systems and film digitizers with similar sensitivity and specificity rates.

PubMed Disclaimer

Publication types

LinkOut - more resources