Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;29(2):391-6.
doi: 10.1023/b:nere.0000013742.19074.7e.

Inositol tetrakisphosphate (IP4)- and inositol triphosphate (IP3)-dependent Ca2+ influx in cortical neuronal nuclei of newborn piglets following graded hypoxia

Affiliations

Inositol tetrakisphosphate (IP4)- and inositol triphosphate (IP3)-dependent Ca2+ influx in cortical neuronal nuclei of newborn piglets following graded hypoxia

Om Prakash Mishra et al. Neurochem Res. 2004 Feb.

Abstract

Previous studies have shown that hypoxia results in a modification of the binding characteristics of the neuronal nuclear membrane inositol tetrakisphosphate (IP4) and inositol triphosphate (IP3) receptors. The present study tests the hypothesis that hypoxia-induced modification of the IP4 and IP3 receptors results in increased IP4 and IP3 dependent Ca2+ influx in neuronal nuclei as a function of the degree of cerebral tissue hypoxia in newborn piglets. Studies were performed in piglets, 3-5 days old, divided into normoxic (N = 5) and hypoxic (N = 6) groups. The hypoxic group was exposed to decreased FiO2 ranging from 0.15 to 0.05 for 1 h. Brain tissue hypoxia was documented biochemically by determining ATP and phosphocreatine (PCr) levels. Neuronal nuclei were isolated and 45Ca2+ influx was determined in a medium containing 50 mM Tris buffer (pH 7.4), neuronal nuclei (150 microg protein), 1 microM 45Ca2+, with or without 10 microM IP4 or IP3. In normoxic and hypoxic groups, ATP levels were 4.27 +/- 0.80 and 1.40 +/- 0.69 micromoles/g brain, respectively, P < .001 (ranging from 4.78 to 0.82). PCr levels were 3.40 +/- 0.99 and 0.91 +/- 0.57 micromoles/g brain, respectively, P < .001 (raning from 4.07 to 0.60). During hypoxia, IP4-dependent intranuclear 45Ca2+ influx increased from 3.39 +/- 0.64 in normoxic nuclei to 13.30 +/- 2.18 pM/mg protein in hypoxic nuclei (P < .01). There was an inverse correlation between the 45Ca2+ influx in neuronal nuclei and the levels of cerebral tissue ATP (r = 0.83) and PCr (r = 0.85). Similarly, IP3-dependent intranuclear 45Ca2+ influx increased from 2.26 +/- 0.38 pmoles/mg protein in normoxic nuclei to 11.12 +/- 1.65 pmoles/mg protein in hypoxic nuclei and showed an inverse correlation between 45Ca2+ influx in neuronal nuclei and the levels of cerebral tissue ATP (r = 0.86) and PCr (r = 0.71). The data demonstrate that there is an IP4- as well as IP3-dependent increase in nuclear Ca2+ influx with increasing cerebral tissue hypoxia, suggesting a hypoxia-induced modification of the nuclear membrane IP4 and IP3 receptors. We propose that there is a specific level of tissue hypoxia that results in a critical increase of intranuclear Ca2+ that leads to altered transcription of apoptotic genes and activation of nuclear endonucleases resulting in hypoxia-induced programmed neuronal death.

PubMed Disclaimer

References

    1. Nature. 1997 Jan 16;385(6613):260-5 - PubMed
    1. Science. 2001 Oct 12;294(5541):333-9 - PubMed
    1. Neuron. 1999 Apr;22(4):789-98 - PubMed
    1. Brain Res. 2002 Nov 1;954(1):60-7 - PubMed
    1. Brain Res Bull. 1999 Feb;48(3):233-8 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources