Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Feb;79(1):207-33.
doi: 10.1017/s1464793103006195.

Metabolic rate depression in animals: transcriptional and translational controls

Affiliations
Review

Metabolic rate depression in animals: transcriptional and translational controls

Kenneth B Storey et al. Biol Rev Camb Philos Soc. 2004 Feb.

Abstract

Metabolic rate depression is an important survival strategy for many animal species and a common element of hibernation, torpor, aestivation, anaerobiosis, diapause, and anhydrobiosis. Studies of the biochemical mechanisms that regulate reversible transitions to and from hypometabolic states are identifying principles of regulatory control that are conserved across phylogenetic lines and that are broadly applied to the control of multiple cell functions. One such mechanism is reversible protein phosphorylation which is now known to contribute to the regulation of fuel metabolism, to ion channel arrest, and to the suppression of protein synthesis during hypometabolism. The present review focuses on two new areas of research in hypometabolism: (1) the role of differential gene expression in supplying protein products that adjust metabolism or protect cell functions for long-term survival, and (2) the mechanisms of protein life extension in hypometabolism involving inhibitory controls of transcription, translation and protein degradation. Control of translation examines reversible phosphorylation regulation of ribosomal initiation and elongation factors, the dissociation of polysomes and storage of mRNA transcripts during hypometabolism, and control over the translation of different mRNA types by differential sequestering of mRNA into polysome versus monosome fractions. The analysis draws primarily from current research on two animal models, hibernating mammals and anoxia-tolerant molluscs, with selected examples from multiple other sources.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources