Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Feb;32(2):202-11.
doi: 10.1023/b:abme.0000012740.47963.9e.

Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models

Affiliations
Comparative Study

Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models

P Savage et al. Ann Biomed Eng. 2004 Feb.

Abstract

Cardiovascular stents are metal scaffolds that are used in the treatment of atherosclerosis. These devices are typically composed of very thin struts (< or = 100 microm thickness, for coronary applications). At this size-scale the question arises as to the suitability of using bulk material properties in stent design. This paper investigates the use of finite element analysis to predict the mechanical failure of stent struts, typical of the strut size used in coronary stents. 316 L stainless steel in uniaxial loading was considered. To accurately represent the constitutive behavior of the material at this size-scale, a computational micromechanics approach was taken involving an explicit representation of the grain structure in the steel struts, and the use of crystal plasticity theory to represent the constitutive behavior of the individual grains. The development of the finite element models is discussed and results are presented for the predictions of tensile mechanical behavior as a function of strut thickness. The results showed that using this modelling approach, a size effect, already seen experimentally, is produced. This has significant implications for stent design, especially in the context of the desire to produce smaller stents for small bore neurovascular and peripheral artery applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources