Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;271(6):1219-26.
doi: 10.1111/j.1432-1033.2004.04035.x.

Antimicrobial activities of heparin-binding peptides

Affiliations
Free article

Antimicrobial activities of heparin-binding peptides

Emma Andersson et al. Eur J Biochem. 2004 Mar.
Free article

Abstract

Antimicrobial peptides are effector molecules of the innate immune system. We recently showed that the human antimicrobial peptides alpha-defensin and LL-37 bind to glycosaminoglycans (heparin and dermatan sulphate). Here we demonstrate the obverse, i.e. structural motifs associated with heparin affinity (cationicity, amphipaticity, and consensus regions) may confer antimicrobial properties to a given peptide. Thus, heparin-binding peptides derived from laminin isoforms, von Willebrand factor, vitronectin, protein C inhibitor, and fibronectin, exerted antimicrobial activities against Gram-positive and Gram-negative bacteria. Similar results were obtained using heparin-binding peptides derived from complement factor C3 as well as consensus sequences for heparin-binding (Cardin and Weintraub motifs). These sequence motifs, and additional peptides, also killed the fungus Candida albicans. These data will have implications for the search for novel antimicrobial peptides and utilization of heparin-protein interactions should be helpful in the identification and purification of novel antimicrobial peptides from complex biological mixtures. Finally, consensus regions may serve as templates for de novo synthesis of novel antimicrobial molecules.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources