Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar 30;122(2):116-25.
doi: 10.1016/j.molbrainres.2003.12.004.

Rescue of NGF-deficient mice I: transgenic expression of NGF in skin rescues mice lacking endogenous NGF

Affiliations

Rescue of NGF-deficient mice I: transgenic expression of NGF in skin rescues mice lacking endogenous NGF

Susan M W Harrison et al. Brain Res Mol Brain Res. .

Abstract

Mice lacking a functional NGF gene (ngf-/- mice) have less than one third of the normal complement of sensory neurons, few sympathetic postganglionic neurons and die shortly after birth. We report here that transgenic expression of NGF under control of the K14 keratin promoter can rescue some elements of the peripheral nervous system and restore normal growth and viability to ngf-/- mice. While hybrid transgenic-ngf-/- mice (ngfTKOs) displayed marginal rescue of trigeminal ganglion neurons, the percentage of CGRP-positive neurons was restored to normal. Restoration of CGRP-positive terminals in skin and spinal cord was also found and accompanied by recovery of behavioral responses to noxious stimuli. ngfTKO mice displayed a normal number of superior cervical ganglion neurons and recovery of sympathetic innervation of skin. These results demonstrate that substitution of a functional NGF locus by a transgene directing expression largely to skin can result in normal growth and viability. Thus, the most vital functions of NGF are not dependent on faithful recapitulation of the normal spatiotemporal pattern of gene expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources