Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jun;128(2):103-13.
doi: 10.1007/BF00231883.

Permeation of Ca2+ through K+ channels in the plasma membrane of Vicia faba guard cells

Affiliations

Permeation of Ca2+ through K+ channels in the plasma membrane of Vicia faba guard cells

K A Fairley-Grenot et al. J Membr Biol. 1992 Jun.

Abstract

The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K(+)-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (-47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Cai) from 200 to 2 nM or increasing the external [Ca2+] (Cao) from 1 to 10 mM increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Cao also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. -160 mV, indicating that the Ca2+ block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Cai- and Cao-dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectifying K+ channels are part of a regulatory mechanism for Cai. Changes in Cao and (associated) changes in Cai regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. Biophys J. 1980 Jun;30(3):473-88 - PubMed
    1. J Gen Physiol. 1988 Nov;92(5):667-83 - PubMed
    1. Science. 1990 Feb 23;247(4945):969-73 - PubMed
    1. Nature. 1990 Aug 23;346(6286):769-71 - PubMed

Publication types

LinkOut - more resources