Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;22(2):328-33.
doi: 10.1016/S0736-0266(03)00185-2.

Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism

Affiliations
Free article

Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism

Steven P Arnoczky et al. J Orthop Res. 2004 Mar.
Free article

Abstract

To determine the effect of various degrees of ex vivo static tensile loading on the expression of collagenase (MMP-1) in tendon cells, rat tail tendons were statically loaded in tension at 0.16, 0.77, 1.38 or 2.6 MPa for 24 h. Northern blot analysis was used to assay for mRNA expression of MMP-1 in freshly harvested, 24 h load deprived, and 24 h statically loaded tendons. Western blot analysis was used to assay for pro-MMP-1 and MMP-1 protein expression in fresh and 24 h load deprived tendons. Freshly harvested rat tail tendons demonstrated no evidence of MMP-1 mRNA expression and no evidence of the pro-MMP-1 or MMP-1 protein. Ex vivo load deprivation for 24 h resulted in a marked increase in the mRNA expression of MMP-1 which coincided with a marked increase of both pro-MMP-1 and MMP-1 protein expression. When tendons were subjected to ex vivo static tensile loading during the 24 h culture period, a significant inhibition of this upregulation of MMP-1 mRNA expression was found with increasing load (p<0.05). A strong (r2=0.78) and significant (p<0.001) inverse correlation existed between the level of static tensile load and the expression of MMP-1. Disruption of the actin cytoskeleton with cytochalasin D abolished the inhibitory effect of ex vivo static tensile loading on MMP-1 expression. The results of this study suggest that up-regulation of MMP-1 expression in tendon cells ex vivo can be inhibited by static tensile loading, presumably through a cytoskeletally based mechanotransduction pathway.

PubMed Disclaimer

LinkOut - more resources