Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;287(2):H860-5.
doi: 10.1152/ajpheart.00752.2003. Epub 2004 Mar 11.

Cardiac sympathetic nerve stimulation does not attenuate dynamic vagal control of heart rate via alpha-adrenergic mechanism

Affiliations
Free article

Cardiac sympathetic nerve stimulation does not attenuate dynamic vagal control of heart rate via alpha-adrenergic mechanism

Tadayoshi Miyamoto et al. Am J Physiol Heart Circ Physiol. 2004 Aug.
Free article

Abstract

Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources