Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Apr;96(4):1249-61.
doi: 10.1152/japplphysiol.01155.2003.

Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans

Affiliations
Free article
Review

Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans

William H Cooke et al. J Appl Physiol (1985). 2004 Apr.
Free article

Abstract

Hemorrhage is a leading cause of death in both civilian and battlefield trauma. Survival rates increase when victims requiring immediate intervention are correctly identified in a mass-casualty situation, but methods of prioritizing casualties based on current triage algorithms are severely limited. Development of effective procedures to predict the magnitude of hemorrhage and the likelihood for progression to hemorrhagic shock must necessarily be based on carefully controlled human experimentation, but controlled study of severe hemorrhage in humans is not possible. It may be possible to simulate hemorrhage, as many of the physiological compensations to acute hemorrhage can be mimicked in the laboratory by applying negative pressure to the lower extremities. Lower body negative pressure (LBNP) sequesters blood from the thorax into dependent regions of the pelvis and legs, effectively decreasing central blood volume in a similar fashion as acute hemorrhage. In this review, we compare physiological responses to hemorrhage and LBNP with particular emphasis on cardiovascular compensations that both share in common. Through evaluation of animal and human data, we present evidence that supports the hypothesis that LBNP, and resulting volume sequestration, is an effective technique to study physiological responses and mechanisms associated with acute hemorrhage in humans. Such experiments could lead to clinical algorithms that identify bleeding victims who will likely progress to hemorrhagic shock and require lifesaving intervention(s).

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources