Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice
- PMID: 15016880
- PMCID: PMC371090
- DOI: 10.1128/jvi.78.7.3572-3577.2004
Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice
Abstract
Following intranasal administration, the severe acute respiratory syndrome (SARS) coronavirus replicated to high titers in the respiratory tracts of BALB/c mice. Peak replication was seen in the absence of disease on day 1 or 2, depending on the dose administered, and the virus was cleared within a week. Viral antigen and nucleic acid were detected in bronchiolar epithelial cells during peak viral replication. Mice developed a neutralizing antibody response and were protected from reinfection 28 days following primary infection. Passive transfer of immune serum to naïve mice prevented virus replication in the lower respiratory tract following intranasal challenge. Thus, antibodies, acting alone, can prevent replication of the SARS coronavirus in the lung, a promising observation for the development of vaccines, immunotherapy, and immunoprophylaxis regimens.
Figures



Similar articles
-
Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge.J Virol. 2008 Apr;82(7):3220-35. doi: 10.1128/JVI.02377-07. Epub 2008 Jan 16. J Virol. 2008. PMID: 18199635 Free PMC article.
-
Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein.J Virol. 2013 Jun;87(12):6551-9. doi: 10.1128/JVI.00087-13. Epub 2013 Apr 10. J Virol. 2013. PMID: 23576515 Free PMC article.
-
Neutralizing antibody against severe acute respiratory syndrome (SARS)-coronavirus spike is highly effective for the protection of mice in the murine SARS model.Microbiol Immunol. 2009 Feb;53(2):75-82. doi: 10.1111/j.1348-0421.2008.00097.x. Microbiol Immunol. 2009. PMID: 19291090 Free PMC article.
-
Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.Avian Pathol. 2003 Dec;32(6):567-82. doi: 10.1080/03079450310001621198. Avian Pathol. 2003. PMID: 14676007 Free PMC article. Review.
-
Pathogenesis of severe acute respiratory syndrome.Curr Opin Immunol. 2005 Aug;17(4):404-10. doi: 10.1016/j.coi.2005.05.009. Curr Opin Immunol. 2005. PMID: 15950449 Free PMC article. Review.
Cited by
-
Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease.JCI Insight. 2020 Oct 2;5(19):e142032. doi: 10.1172/jci.insight.142032. JCI Insight. 2020. PMID: 32841215 Free PMC article.
-
Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials.Int J Biol Macromol. 2020 Dec 15;165(Pt A):18-43. doi: 10.1016/j.ijbiomac.2020.09.204. Epub 2020 Sep 28. Int J Biol Macromol. 2020. PMID: 32991900 Free PMC article. Review.
-
Development of an In Vitro Model of SARS-CoV-Induced Acute Lung Injury for Studying New Therapeutic Approaches.Antioxidants (Basel). 2022 Sep 27;11(10):1910. doi: 10.3390/antiox11101910. Antioxidants (Basel). 2022. PMID: 36290634 Free PMC article.
-
Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection.Cell. 2021 Apr 1;184(7):1804-1820.e16. doi: 10.1016/j.cell.2021.02.026. Epub 2021 Feb 12. Cell. 2021. PMID: 33691139 Free PMC article.
-
Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice.J Virol. 2006 Nov;80(21):10382-94. doi: 10.1128/JVI.00747-06. J Virol. 2006. PMID: 17041219 Free PMC article.
References
-
- Booth, C. M., L. M. Matukas, G. A. Tomlinson, A. R. Rachlis, D. B. Rose, H. A. Dwosh, S. L. Walmsley, T. Mazzulli, M. Avendano, P. Derkach, I. E. Ephtimios, I. Kitai, B. D. Mederski, S. B. Shadowitz, W. L. Gold, L. A. Hawryluck, E. Rea, J. S. Chenkin, D. W. Cescon, S. M. Poutanen, and A. S. Detsky. 2003. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 289:2801-2809. - PubMed
-
- Burt, F. J., R. Swanepoel, W. J. Shieh, J. F. Smith, P. A. Leman, P. W. Greer, L. M. Coffield, P. E. Rollin, T. G. Ksiazek, C. J. Peters, and S. R. Zaki. 1997. Immunohistochemical and in situ localization of Crimean-Congo hemorrhagic fever (CCHF) virus in human tissues and implications for CCHF pathogenesis. Arch. Pathol. Lab. Med. 121:839-846. - PubMed
-
- Crowe, J. E., Jr., P. T. Bui, W. T. London, A. R. Davis, P. P. Hung, R. M. Chanock, and B. R. Murphy. 1994. Satisfactorily attenuated and protective mutants derived from a partially attenuated cold-passaged respiratory syncytial virus mutant by introduction of additional attenuating mutations during chemical mutagenesis. Vaccine 12:691-699. - PubMed
-
- Donnelly, C. A., A. C. Ghani, G. M. Leung, A. J. Hedley, C. Fraser, S. Riley, L. J. Abu-Raddad, L. M. Ho, T. Q. Thach, P. Chau, K. P. Chan, T. H. Lam, L. Y. Tse, T. Tsang, S. H. Liu, J. H. Kong, E. M. Lau, N. M. Ferguson, and R. M. Anderson. 2003. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361:1761-1766. - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous