Metagenes and molecular pattern discovery using matrix factorization
- PMID: 15016911
- PMCID: PMC384712
- DOI: 10.1073/pnas.0308531101
Metagenes and molecular pattern discovery using matrix factorization
Abstract
We describe here the use of nonnegative matrix factorization (NMF), an algorithm based on decomposition by parts that can reduce the dimension of expression data from thousands of genes to a handful of metagenes. Coupled with a model selection mechanism, adapted to work for any stochastic clustering algorithm, NMF is an efficient method for identification of distinct molecular patterns and provides a powerful method for class discovery. We demonstrate the ability of NMF to recover meaningful biological information from cancer-related microarray data. NMF appears to have advantages over other methods such as hierarchical clustering or self-organizing maps. We found it less sensitive to a priori selection of genes or initial conditions and able to detect alternative or context-dependent patterns of gene expression in complex biological systems. This ability, similar to semantic polysemy in text, provides a general method for robust molecular pattern discovery.
Figures







Similar articles
-
Improving gene expression cancer molecular pattern discovery using nonnegative principal component analysis.Genome Inform. 2008;21:200-11. Genome Inform. 2008. PMID: 19425159
-
Tumor clustering using nonnegative matrix factorization with gene selection.IEEE Trans Inf Technol Biomed. 2009 Jul;13(4):599-607. doi: 10.1109/TITB.2009.2018115. Epub 2009 Apr 14. IEEE Trans Inf Technol Biomed. 2009. PMID: 19369170
-
Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis.Bioinformatics. 2007 Jun 15;23(12):1495-502. doi: 10.1093/bioinformatics/btm134. Epub 2007 May 5. Bioinformatics. 2007. PMID: 17483501
-
Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis.J Biomed Inform. 2008 Aug;41(4):602-6. doi: 10.1016/j.jbi.2007.12.003. Epub 2007 Dec 23. J Biomed Inform. 2008. PMID: 18234564
-
Nonnegative matrix factorization: an analytical and interpretive tool in computational biology.PLoS Comput Biol. 2008 Jul 25;4(7):e1000029. doi: 10.1371/journal.pcbi.1000029. PLoS Comput Biol. 2008. PMID: 18654623 Free PMC article. Review.
Cited by
-
iDEP Web Application for RNA-Seq Data Analysis.Methods Mol Biol. 2021;2284:417-443. doi: 10.1007/978-1-0716-1307-8_22. Methods Mol Biol. 2021. PMID: 33835455
-
Unsupervised phenotyping of sepsis using nonnegative matrix factorization of temporal trends from a multivariate panel of physiological measurements.BMC Med Inform Decis Mak. 2021 Apr 9;21(Suppl 5):95. doi: 10.1186/s12911-021-01460-7. BMC Med Inform Decis Mak. 2021. PMID: 33836745 Free PMC article.
-
Recursive integration of synergised graph representations of multi-omics data for cancer subtypes identification.Sci Rep. 2022 Sep 17;12(1):15629. doi: 10.1038/s41598-022-17585-2. Sci Rep. 2022. PMID: 36115864 Free PMC article.
-
Multi-Omics Data Fusion via a Joint Kernel Learning Model for Cancer Subtype Discovery and Essential Gene Identification.Front Genet. 2021 Mar 4;12:647141. doi: 10.3389/fgene.2021.647141. eCollection 2021. Front Genet. 2021. PMID: 33747053 Free PMC article.
-
Comprehensive Study of Tumor Immune Microenvironment and Relevant Genes in Hepatocellular Carcinoma Identifies Potential Prognostic Significance.Front Oncol. 2020 Sep 24;10:554165. doi: 10.3389/fonc.2020.554165. eCollection 2020. Front Oncol. 2020. PMID: 33072579 Free PMC article.
References
-
- Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., et al. (2000) Nature 403, 503–511. - PubMed
-
- Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., et al. (2000) Nature 406, 747–752. - PubMed
-
- Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., et al. (1999) Science 286, 531–537. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources