Simulating the SARS outbreak in Beijing with limited data
- PMID: 15019504
- PMCID: PMC7134597
- DOI: 10.1016/j.jtbi.2003.11.014
Simulating the SARS outbreak in Beijing with limited data
Abstract
We propose a mathematical model to simulate the SARS outbreak in Beijing. The model consists of six subpopulations, namely susceptible, exposed, quarantined, suspect, probable and removed, as China started to report SARS cases as suspect and probable separately from April 27 and cases transferred from suspect class to probable class from May 2. By simplifying the model to a two-compartment suspect-probable model and a single-compartment probable model and using limited data, we are able to simulate the SARS outbreak in Beijing. We estimate that the reproduction number varies from 1.0698 to 3.2524 and obtain certain important epidemiological parameters.
Figures










Similar articles
-
Epidemiological characteristics of an outbreak of severe acute respiratory syndrome in Dongcheng District of Beijing from March to May 2003.Biomed Environ Sci. 2003 Dec;16(4):305-13. Biomed Environ Sci. 2003. PMID: 15011961
-
Evaluation of control measures implemented in the severe acute respiratory syndrome outbreak in Beijing, 2003.JAMA. 2003 Dec 24;290(24):3215-21. doi: 10.1001/jama.290.24.3215. JAMA. 2003. PMID: 14693874
-
Efficiency of quarantine during an epidemic of severe acute respiratory syndrome--Beijing, China, 2003.MMWR Morb Mortal Wkly Rep. 2003 Oct 31;52(43):1037-40. MMWR Morb Mortal Wkly Rep. 2003. PMID: 14586295
-
Insights from the comparisons of SARS-CoV and COVID-19 outbreaks: The evidence-based experience of epidemic prevention in China.Medicine (Baltimore). 2021 Feb 12;100(6):e24650. doi: 10.1097/MD.0000000000024650. Medicine (Baltimore). 2021. PMID: 33578592 Free PMC article. Review.
-
Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review.Cochrane Database Syst Rev. 2020 Sep 15;9(9):CD013574. doi: 10.1002/14651858.CD013574.pub2. Cochrane Database Syst Rev. 2020. PMID: 33959956 Free PMC article.
Cited by
-
New approaches to quantifying the spread of infection.Nat Rev Microbiol. 2005 Jul;3(7):529-36. doi: 10.1038/nrmicro1178. Nat Rev Microbiol. 2005. PMID: 15995653 Free PMC article. Review.
-
Modeling the transmission dynamics of Ebola virus disease in Liberia.Sci Rep. 2015 Sep 8;5:13857. doi: 10.1038/srep13857. Sci Rep. 2015. PMID: 26347015 Free PMC article.
-
Theoretical Epidemiology Needs Urgent Attention in China.China CDC Wkly. 2024 May 24;6(21):499-502. doi: 10.46234/ccdcw2024.096. China CDC Wkly. 2024. PMID: 38854461 Free PMC article.
-
Biochemical and phylogenetic networks-II: X-trees and phylogenetic trees.J Math Chem. 2021;59(3):699-718. doi: 10.1007/s10910-020-01195-2. Epub 2021 Feb 28. J Math Chem. 2021. PMID: 33678934 Free PMC article.
-
Estimating the basic reproduction number at the beginning of an outbreak.PLoS One. 2022 Jun 17;17(6):e0269306. doi: 10.1371/journal.pone.0269306. eCollection 2022. PLoS One. 2022. PMID: 35714080 Free PMC article.
References
-
- Anderson R.M., May R.M. Infectious Diseases of Humans. Oxford University Press; London: 1991.
-
- Brauer F., Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology. Springer; New York: 2000.
-
- Booth C.M., Matukas L.M., Tomlinson G.A., Rachlis A.R., Rose D.B., Dwosh H.A., Walmsley S.L., Mazzulli T., Avendano M., Derkach P., Ephtimios I.E., Kitai I., Mederski B.D., Shadowitz S.B., Gold W.L., Hawryluck L.A., Rea E., Chenkin J.S., Cescon D.W., Poutanen S.M., Detsky A.S. Clinical features and short-term outcomes of 144 patients with SARS in the Greater Toronto area. JAMA. 2003;289:1–9. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous