Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 1;62(1):63-73.
doi: 10.1016/j.cardiores.2003.12.031.

Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes

Affiliations
Free article

Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes

William E Louch et al. Cardiovasc Res. .
Free article

Abstract

Objectives: During cardiac excitation-contraction coupling, Ca2+ release from the sarcoplasmic reticulum (SR) occurs at the junctional complex with the T-tubules, containing the L-type Ca2+ channels. A partial loss of T-tubules has been described in myocytes from failing canine and human hearts. We examined how graded reduction of T-tubule density would affect the synchrony of Ca2+ release.

Methods: Adult pig ventricular myocytes were isolated and cultured for 24 and 72 h. T-tubules, visualized with di-8-ANEPPS, and [Ca2+]i transients (Fluo-3) were recorded during confocal line scan imaging.

Results: Cultured cardiomyocytes exhibited a progressive reduction in T-tubule density. [Ca2+]i transients showed small areas of delayed Ca2+ release which gradually increased in number and size with loss of T-tubules. Local [Ca2+]i transients in the delayed regions were reduced. Due to these changes, loss of T-tubules resulted in an overall slowing of the rise of [Ca2+] along the entire line scan and transient magnitude tended to be reduced, but there was no change in SR Ca2+ content. Human myocytes isolated from failing hearts had a T-tubule density comparable to that of freshly isolated pig myocytes. The size, but not the number, of delayed release areas tended to be larger. The overall rate of rise of [Ca2+]i was significantly faster than in pig myocytes with low T-tubule density.

Conclusions: Loss of T-tubules reduces the synchrony of SR Ca2+ release. This could contribute to reduced efficiency of excitation-contraction coupling in heart failure, though dyssynchrony in human failing cells appears to be modest.

PubMed Disclaimer

Comment in

Publication types