Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jan;88(1):61-7.
doi: 10.1016/j.jsbmb.2003.10.007.

Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells

Affiliations
Comparative Study

Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells

Luchuan Cao et al. J Steroid Biochem Mol Biol. 2004 Jan.

Abstract

In aged rats, trophic hormone-stimulated testosterone secretion by isolated Leydig cells is greatly reduced. The current studies were initiated to establish a functional link between excess oxidative stress and the age-related decline in steroidogenesis. Highly purified Leydig cell preparations obtained from 5-month (young mature) and 24-month (old) Sprague-Dawley rats were employed to measure and compare levels of lipid peroxidation, non-enzymatic (alpha-tocopherol, ascorbic acid, and reduced/oxidized glutathione) and enzymatic (Cu, Zn-superoxide dismutase, Cu, Zn-SOD; Mn-superoxide dismutase, Mn-SOD; glutathione peroxidase-1, GPX-1, and catalase, CAT) anti-oxidants. The extent of lipid peroxidation (oxidative damage) in isolated membrane fractions was quantified by measuring the content of thiobarbituric acid-reactive substances (TBARS) under basal conditions, or in the presence of non-enzymatic or enzymatic pro-oxidants. Membrane preparations isolated from Leydig cells from old rats exhibited two- to three-fold enhancement of basal TBARS formation. However, aging had no significant effect on TBARS formation in response to either non-enzymatic or enzymatic pro-oxidants. Among the non-enzymatic anti-oxidants, the levels of reduced glutathione were drastically reduced during aging, while levels of alpha-tocopherol and ascorbic acid remained unchanged. Both steady-state mRNA levels and catalytic activities of Cu, Zn-SOD, Mn-SOD, and GPX-1 were also significantly lower in Leydig cells from 24-month-old rats as compared with 5-month-old control rats. In contrast, neither mRNA levels nor enzyme activity of catalase was sensitive to aging. From these data we conclude that aging is accompanied by reduced expression of key enzymatic and non-enzymatic anti-oxidants in Leydig cells leading to excessive oxidative stress and enhanced oxidative damage (lipid peroxidation). It is postulated that such excessive oxidative insult may contribute to the observed age-related decline in testosterone secretion by testicular Leydig cells.

PubMed Disclaimer

Publication types

LinkOut - more resources