Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Mar;176(3):409-16.
doi: 10.1055/s-2004-812889.

[Quantification of atelectases in artificial respiration: spiral-CT versus dynamic single-slice CT]

[Article in German]
Affiliations
Comparative Study

[Quantification of atelectases in artificial respiration: spiral-CT versus dynamic single-slice CT]

[Article in German]
C Bletz et al. Rofo. 2004 Mar.

Abstract

Purpose: Dynamic CT (dCT) allows visualization and quantification of ventilated lung and atelectases with high temporal resolution during continuous ventilation. This study compares a quantitative image analysis in a subcarinal single slice dCT series versus a whole lung spiral-CT, in order to analyze, whether the distribution of atelectasis of a single dCT series is representative for the whole lung.

Materials and methods: dCT in sliding windows technique (slice thickness 1 mm, temporal increment 100 ms) was performed in 8 healthy pigs 3 cm caudal to the carina during continuous mechanical ventilation. Subsequently, a spiral-CT of the whole lung (slice thickness 2 mm; pitch 1.5; increment 2 mm) was acquired during inspiratory breath hold (airway pressure 20 mbar). Lung segmentation and planimetry of predefined density ranges were achieved using a dedicated software tool in both data-sets. Thus, the fractions of the following functional lung compartments were averaged over time: hyperinflated lung (- 1024 to - 910 HE), normal ventilated lung -900 to -300 HE) and atelectasis (-300 to +200 HE).

Results: Quantitative analysis of dCT-series during continuous respiration correlated with the density analysis in spiral-CT as follows: hyperinflated lung r = 0.56; normal ventilated lung r = 0.83 and atelectases r = 0.84. Analysis of spiral-CT showed the following distribution of functional lung compartments: hyperinflated lung 3.1% normal ventilated lung 77.9% and atelectasis 19.0%. In dCT, hyperinflated lung represented 6.4%, normal ventilated lung 65.2% and atelectasis 28.4% of total the lung area.

Conclusion: The results of our study demonstrate that dCT allows monitoring of atelectasis formation in response to different ventilatory strategies. However, a deviation between dCT and spiral-CT has to be taken into account. In subcarinal dCT series, hyperinflated lung areas and atelectases were overestimated due to a craniocaudal gradient of atelectases, whereas normal ventilated lung was underestimated.

PubMed Disclaimer

Publication types