Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Mar;4(1):1-10.
doi: 10.2174/1568005043480925.

Genetic and biochemical aspects of drug resistance in malaria parasites

Affiliations
Review

Genetic and biochemical aspects of drug resistance in malaria parasites

K Hayton et al. Curr Drug Targets Infect Disord. 2004 Mar.

Abstract

Drug resistance is one of the major factors contributing to the resurgence of malaria, especially resistance to the most affordable drugs such as chloroquine and Fansidar, a combination drug of pyrimethamine and sulfadoxine. Understanding the mechanisms of such resistance and developing new treatments, including new drugs, are urgently needed. Great progress has been made recently in studying the mechanisms of drug action and drug resistance in malaria parasites, particularly in Plasmodium falciparum. These efforts are highlighted by the demonstration of mutations in the parasite dihydrofolate reductase and dihydropteroate synthase genes conferring resistance to pyrimethamine and sulfadoxine, respectively, and by the recent discovery of mutations in the gene coding for a putative transporter, PfCRT, conferring resistance to chloroquine. Mutations in a homologue of a human multiple-drug-resistant gene, pfmdr1, have also been shown to be associated with responses to multiple drugs. However, except in the case of resistance to antifolate drugs, the mechanisms of action and resistance to most drugs currently in use are essentially unknown or are being debated. Additionally, novel mechanisms of resistance exist in different malaria parasites, complicating the process of developing new drugs and treatment strategies. Here we summarise the progress made in drug resistance research in malaria parasites over the past 20 years, emphasising the most recent developments in the genetics of drug resistance.

PubMed Disclaimer

MeSH terms

LinkOut - more resources